SHARE
TWEET

Untitled

a guest Dec 13th, 2016 92 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. /usr/bin/python2.7 /mnt/Data/Projects/ecomobi-microservice/topica_analytic.py
  2. INFO:common.jdbc:Connecting to database
  3.     ->dbname='fb_detail' user='ecodata' host='104.199.222.244' port='5432' password='Eco12387654'
  4. INFO:parameter:Load 907 ids of universities
  5. INFO:parameter:Load 63 ids of provinces
  6. INFO:parameter:Load 7 ids of school types
  7. INFO:parameter:Load 19 ids of majors
  8. /home/chiennd/.local/lib/python2.7/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
  9.   "This module will be removed in 0.20.", DeprecationWarning)
  10. INFO:common.jdbc:Connecting to database
  11.     ->dbname='topica' user='ecomobi' host='localhost' port='2222' password='OD4o9ammD42'
  12. INFO:__main__:Reading data....
  13. sys:1: DtypeWarning: Columns (130,131,132,133) have mixed types. Specify dtype option on import or set low_memory=False.
  14. INFO:__main__:Finish reading data, shape of data: (100361, 137)
  15. INFO:__main__:Create extractor...
  16. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  17.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  18.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  19.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  20.  'highest_school_degree' 'majors' 'university' 'university_type'
  21.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  22.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  23.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  24.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  25.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  26.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  27.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  28.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  29.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  30.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  31.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  32.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  33.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  34.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  35.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  36.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  37.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  38.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  39.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  40.  'olm_onboarding']
  41. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  42.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  43.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  44.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  45.  'highest_school_degree' 'majors' 'university' 'university_type'
  46.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  47.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  48.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  49.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  50.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  51.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  52.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  53.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  54.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  55.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  56.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  57.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  58.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  59.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  60.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  61.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  62.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  63.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  64.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  65.  'olm_onboarding']
  66. After clean: (97279, 37)
  67. After clean: (3082, 37)
  68. ------------------------- Time 0 ---------------------------
  69. Train (90324, 37)
  70. Test (10037, 37)
  71. Number of true-predicted items: 9805
  72. Number of false-predicted items: 232
  73. Label: [ 0.  1.]
  74. True by label: [9700  105]
  75. False by label: [ 28 204]
  76. Accuracy - 0 - 1 - total: [ 0.99712171  0.33980583  0.97688552]
  77. ------------------------- Time 1 ---------------------------
  78. Train (90324, 37)
  79. Test (10037, 37)
  80. Number of true-predicted items: 9806
  81. Number of false-predicted items: 231
  82. Label: [ 0.  1.]
  83. True by label: [9695  111]
  84. False by label: [ 33 198]
  85. Accuracy - 0 - 1 - total: [ 0.99660773  0.3592233   0.97698515]
  86. ------------------------- Time 2 ---------------------------
  87. Train (90325, 37)
  88. Test (10036, 37)
  89. Number of true-predicted items: 9808
  90. Number of false-predicted items: 228
  91. Label: [ 0.  1.]
  92. True by label: [9707  101]
  93. False by label: [ 21 207]
  94. Accuracy - 0 - 1 - total: [ 0.99784128  0.32792208  0.97728179]
  95. ------------------------- Time 3 ---------------------------
  96. Train (90325, 37)
  97. Test (10036, 37)
  98. Number of true-predicted items: 9807
  99. Number of false-predicted items: 229
  100. Label: [ 0.  1.]
  101. True by label: [9690  117]
  102. False by label: [ 38 191]
  103. Accuracy - 0 - 1 - total: [ 0.99609375  0.37987013  0.97718214]
  104. ------------------------- Time 4 ---------------------------
  105. Train (90325, 37)
  106. Test (10036, 37)
  107. Number of true-predicted items: 9808
  108. Number of false-predicted items: 228
  109. Label: [ 0.  1.]
  110. True by label: [9701  107]
  111. False by label: [ 27 201]
  112. Accuracy - 0 - 1 - total: [ 0.99722451  0.3474026   0.97728179]
  113. ------------------------- Time 5 ---------------------------
  114. Train (90325, 37)
  115. Test (10036, 37)
  116. Number of true-predicted items: 9802
  117. Number of false-predicted items: 234
  118. Label: [ 0.  1.]
  119. True by label: [9692  110]
  120. False by label: [ 36 198]
  121. Accuracy - 0 - 1 - total: [ 0.99629934  0.35714286  0.97668394]
  122. ------------------------- Time 6 ---------------------------
  123. Train (90325, 37)
  124. Test (10036, 37)
  125. Number of true-predicted items: 9830
  126. Number of false-predicted items: 206
  127. Label: [ 0.  1.]
  128. True by label: [9713  117]
  129. False by label: [ 15 191]
  130. Accuracy - 0 - 1 - total: [ 0.99845806  0.37987013  0.97947389]
  131. ------------------------- Time 7 ---------------------------
  132. Train (90325, 37)
  133. Test (10036, 37)
  134. Number of true-predicted items: 9807
  135. Number of false-predicted items: 229
  136. Label: [ 0.  1.]
  137. True by label: [9699  108]
  138. False by label: [ 29 200]
  139. Accuracy - 0 - 1 - total: [ 0.99701891  0.35064935  0.97718214]
  140. ------------------------- Time 8 ---------------------------
  141. Train (90325, 37)
  142. Test (10036, 37)
  143. Number of true-predicted items: 9788
  144. Number of false-predicted items: 248
  145. Label: [ 0.  1.]
  146. True by label: [9701   87]
  147. False by label: [ 27 221]
  148. Accuracy - 0 - 1 - total: [ 0.99722451  0.28246753  0.97528896]
  149. ------------------------- Time 9 ---------------------------
  150. Train (90326, 37)
  151. Test (10035, 37)
  152. Number of true-predicted items: 9813
  153. Number of false-predicted items: 222
  154. Label: [ 0.  1.]
  155. True by label: [9702  111]
  156. False by label: [ 25 197]
  157. Accuracy - 0 - 1 - total: [ 0.99742983  0.36038961  0.97787743]
  158. [array([ 0.99712171,  0.33980583,  0.97688552]), array([ 0.99660773,  0.3592233 ,  0.97698515]), array([ 0.99784128,  0.32792208,  0.97728179]), array([ 0.99609375,  0.37987013,  0.97718214]), array([ 0.99722451,  0.3474026 ,  0.97728179]), array([ 0.99629934,  0.35714286,  0.97668394]), array([ 0.99845806,  0.37987013,  0.97947389]), array([ 0.99701891,  0.35064935,  0.97718214]), array([ 0.99722451,  0.28246753,  0.97528896]), array([ 0.99742983,  0.36038961,  0.97787743])]
  159. Final [ 0.99713196  0.34847434  0.97721228]
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
Not a member of Pastebin yet?
Sign Up, it unlocks many cool features!
 
Top