Guest User

Untitled

a guest
Jul 26th, 2025
10
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 65.35 KB | None | 0 0
  1. base_model.model.model.layers.0.mlp.down_proj.lora_A.weight mean=1.8432e-05 max=2.8288e-02 min=-2.6782e-02
  2. base_model.model.model.layers.0.mlp.down_proj.lora_B.weight mean=-1.0342e-05 max=1.4623e-02 min=-1.4244e-02
  3. base_model.model.model.layers.0.mlp.gate_proj.lora_A.weight mean=8.5888e-07 max=3.5453e-02 min=-3.8111e-02
  4. base_model.model.model.layers.0.mlp.gate_proj.lora_B.weight mean=-5.6608e-05 max=1.8999e-02 min=-1.9179e-02
  5. base_model.model.model.layers.0.mlp.up_proj.lora_A.weight mean=-5.6429e-05 max=4.4187e-02 min=-4.1838e-02
  6. base_model.model.model.layers.0.mlp.up_proj.lora_B.weight mean=-1.4524e-05 max=2.1672e-02 min=-2.2618e-02
  7. base_model.model.model.layers.0.self_attn.k_proj.lora_A.weight mean=1.4396e-05 max=3.3593e-02 min=-2.9173e-02
  8. base_model.model.model.layers.0.self_attn.k_proj.lora_B.weight mean=-2.2868e-05 max=2.3200e-02 min=-2.4783e-02
  9. base_model.model.model.layers.0.self_attn.o_proj.lora_A.weight mean=8.1305e-05 max=2.9625e-02 min=-2.9023e-02
  10. base_model.model.model.layers.0.self_attn.o_proj.lora_B.weight mean=2.7766e-06 max=1.8204e-02 min=-1.9760e-02
  11. base_model.model.model.layers.0.self_attn.q_proj.lora_A.weight mean=3.1299e-06 max=3.4809e-02 min=-3.5551e-02
  12. base_model.model.model.layers.0.self_attn.q_proj.lora_B.weight mean=-4.4653e-06 max=3.7070e-02 min=-3.7237e-02
  13. base_model.model.model.layers.0.self_attn.v_proj.lora_A.weight mean=1.4256e-05 max=2.7033e-02 min=-2.4477e-02
  14. base_model.model.model.layers.0.self_attn.v_proj.lora_B.weight mean=-2.4889e-05 max=1.2347e-02 min=-1.1830e-02
  15. base_model.model.model.layers.1.mlp.down_proj.lora_A.weight mean=3.6172e-06 max=2.7060e-02 min=-2.4876e-02
  16. base_model.model.model.layers.1.mlp.down_proj.lora_B.weight mean=-1.2199e-05 max=1.4583e-02 min=-1.4472e-02
  17. base_model.model.model.layers.1.mlp.gate_proj.lora_A.weight mean=5.2318e-06 max=2.7382e-02 min=-2.7873e-02
  18. base_model.model.model.layers.1.mlp.gate_proj.lora_B.weight mean=-1.8345e-05 max=1.7262e-02 min=-2.0498e-02
  19. base_model.model.model.layers.1.mlp.up_proj.lora_A.weight mean=-6.3034e-05 max=2.8945e-02 min=-2.9148e-02
  20. base_model.model.model.layers.1.mlp.up_proj.lora_B.weight mean=1.3911e-05 max=2.0211e-02 min=-1.8182e-02
  21. base_model.model.model.layers.1.self_attn.k_proj.lora_A.weight mean=1.5333e-06 max=3.8468e-02 min=-3.9248e-02
  22. base_model.model.model.layers.1.self_attn.k_proj.lora_B.weight mean=1.6839e-06 max=1.8333e-02 min=-1.8248e-02
  23. base_model.model.model.layers.1.self_attn.o_proj.lora_A.weight mean=-6.1017e-05 max=2.5673e-02 min=-2.7601e-02
  24. base_model.model.model.layers.1.self_attn.o_proj.lora_B.weight mean=-2.2366e-05 max=1.0557e-02 min=-1.4129e-02
  25. base_model.model.model.layers.1.self_attn.q_proj.lora_A.weight mean=-1.4220e-05 max=3.0631e-02 min=-3.5900e-02
  26. base_model.model.model.layers.1.self_attn.q_proj.lora_B.weight mean=-3.9584e-06 max=2.2728e-02 min=-2.2058e-02
  27. base_model.model.model.layers.1.self_attn.v_proj.lora_A.weight mean=-1.2677e-05 max=2.5720e-02 min=-2.6609e-02
  28. base_model.model.model.layers.1.self_attn.v_proj.lora_B.weight mean=7.7598e-06 max=7.5407e-03 min=-9.9816e-03
  29. base_model.model.model.layers.10.mlp.down_proj.lora_A.weight mean=4.2515e-06 max=2.3419e-02 min=-2.5076e-02
  30. base_model.model.model.layers.10.mlp.down_proj.lora_B.weight mean=-6.1798e-06 max=1.1227e-02 min=-1.0485e-02
  31. base_model.model.model.layers.10.mlp.gate_proj.lora_A.weight mean=7.0310e-06 max=3.1629e-02 min=-3.1483e-02
  32. base_model.model.model.layers.10.mlp.gate_proj.lora_B.weight mean=6.8154e-06 max=1.9003e-02 min=-1.9094e-02
  33. base_model.model.model.layers.10.mlp.up_proj.lora_A.weight mean=-1.2230e-05 max=3.0190e-02 min=-2.7556e-02
  34. base_model.model.model.layers.10.mlp.up_proj.lora_B.weight mean=2.8088e-06 max=1.3381e-02 min=-1.4416e-02
  35. base_model.model.model.layers.10.self_attn.k_proj.lora_A.weight mean=-9.5193e-06 max=3.3054e-02 min=-3.3210e-02
  36. base_model.model.model.layers.10.self_attn.k_proj.lora_B.weight mean=-1.4411e-05 max=1.9270e-02 min=-1.6391e-02
  37. base_model.model.model.layers.10.self_attn.o_proj.lora_A.weight mean=-3.3342e-05 max=2.6914e-02 min=-2.9872e-02
  38. base_model.model.model.layers.10.self_attn.o_proj.lora_B.weight mean=-7.0862e-07 max=1.2303e-02 min=-1.2948e-02
  39. base_model.model.model.layers.10.self_attn.q_proj.lora_A.weight mean=-5.4771e-06 max=3.0272e-02 min=-3.1874e-02
  40. base_model.model.model.layers.10.self_attn.q_proj.lora_B.weight mean=2.6497e-05 max=2.3429e-02 min=-2.1472e-02
  41. base_model.model.model.layers.10.self_attn.v_proj.lora_A.weight mean=8.7489e-06 max=3.1717e-02 min=-2.9648e-02
  42. base_model.model.model.layers.10.self_attn.v_proj.lora_B.weight mean=-1.5909e-05 max=1.2221e-02 min=-1.1514e-02
  43. base_model.model.model.layers.11.mlp.down_proj.lora_A.weight mean=-1.4661e-05 max=2.5225e-02 min=-2.4282e-02
  44. base_model.model.model.layers.11.mlp.down_proj.lora_B.weight mean=1.1027e-05 max=1.3639e-02 min=-1.3084e-02
  45. base_model.model.model.layers.11.mlp.gate_proj.lora_A.weight mean=3.3059e-05 max=2.7735e-02 min=-2.8140e-02
  46. base_model.model.model.layers.11.mlp.gate_proj.lora_B.weight mean=-3.9362e-06 max=1.6133e-02 min=-1.8314e-02
  47. base_model.model.model.layers.11.mlp.up_proj.lora_A.weight mean=7.3775e-05 max=2.9786e-02 min=-2.8607e-02
  48. base_model.model.model.layers.11.mlp.up_proj.lora_B.weight mean=7.7250e-06 max=1.6737e-02 min=-1.4717e-02
  49. base_model.model.model.layers.11.self_attn.k_proj.lora_A.weight mean=-6.3283e-06 max=3.4951e-02 min=-3.6097e-02
  50. base_model.model.model.layers.11.self_attn.k_proj.lora_B.weight mean=8.9926e-05 max=2.2293e-02 min=-1.9084e-02
  51. base_model.model.model.layers.11.self_attn.o_proj.lora_A.weight mean=7.5012e-05 max=2.6850e-02 min=-2.9159e-02
  52. base_model.model.model.layers.11.self_attn.o_proj.lora_B.weight mean=9.9208e-06 max=9.6686e-03 min=-9.8218e-03
  53. base_model.model.model.layers.11.self_attn.q_proj.lora_A.weight mean=-3.5116e-05 max=3.2526e-02 min=-3.1937e-02
  54. base_model.model.model.layers.11.self_attn.q_proj.lora_B.weight mean=2.6856e-06 max=2.0636e-02 min=-2.1821e-02
  55. base_model.model.model.layers.11.self_attn.v_proj.lora_A.weight mean=2.1105e-05 max=2.9496e-02 min=-2.9269e-02
  56. base_model.model.model.layers.11.self_attn.v_proj.lora_B.weight mean=-5.4149e-06 max=9.1125e-03 min=-9.4458e-03
  57. base_model.model.model.layers.12.mlp.down_proj.lora_A.weight mean=-1.6252e-05 max=2.4279e-02 min=-2.3810e-02
  58. base_model.model.model.layers.12.mlp.down_proj.lora_B.weight mean=2.0253e-06 max=1.1020e-02 min=-1.1894e-02
  59. base_model.model.model.layers.12.mlp.gate_proj.lora_A.weight mean=2.3127e-06 max=2.6779e-02 min=-2.7704e-02
  60. base_model.model.model.layers.12.mlp.gate_proj.lora_B.weight mean=-9.5897e-06 max=1.4248e-02 min=-1.3816e-02
  61. base_model.model.model.layers.12.mlp.up_proj.lora_A.weight mean=-3.5485e-05 max=2.8053e-02 min=-2.6795e-02
  62. base_model.model.model.layers.12.mlp.up_proj.lora_B.weight mean=-8.1752e-07 max=1.3954e-02 min=-1.5037e-02
  63. base_model.model.model.layers.12.self_attn.k_proj.lora_A.weight mean=1.5857e-05 max=3.1299e-02 min=-3.5387e-02
  64. base_model.model.model.layers.12.self_attn.k_proj.lora_B.weight mean=1.6830e-05 max=1.9947e-02 min=-2.0875e-02
  65. base_model.model.model.layers.12.self_attn.o_proj.lora_A.weight mean=-1.1623e-04 max=2.5936e-02 min=-2.6905e-02
  66. base_model.model.model.layers.12.self_attn.o_proj.lora_B.weight mean=7.2313e-06 max=1.4308e-02 min=-1.3722e-02
  67. base_model.model.model.layers.12.self_attn.q_proj.lora_A.weight mean=-9.8984e-06 max=3.0285e-02 min=-2.9850e-02
  68. base_model.model.model.layers.12.self_attn.q_proj.lora_B.weight mean=-4.1940e-07 max=1.5234e-02 min=-1.4445e-02
  69. base_model.model.model.layers.12.self_attn.v_proj.lora_A.weight mean=1.2413e-05 max=2.8322e-02 min=-2.8028e-02
  70. base_model.model.model.layers.12.self_attn.v_proj.lora_B.weight mean=-9.2585e-08 max=1.1949e-02 min=-1.0567e-02
  71. base_model.model.model.layers.13.mlp.down_proj.lora_A.weight mean=1.4090e-05 max=2.4197e-02 min=-2.4551e-02
  72. base_model.model.model.layers.13.mlp.down_proj.lora_B.weight mean=1.3749e-05 max=1.1339e-02 min=-1.1719e-02
  73. base_model.model.model.layers.13.mlp.gate_proj.lora_A.weight mean=2.4249e-05 max=2.7306e-02 min=-2.7532e-02
  74. base_model.model.model.layers.13.mlp.gate_proj.lora_B.weight mean=-1.1188e-07 max=1.8083e-02 min=-1.6223e-02
  75. base_model.model.model.layers.13.mlp.up_proj.lora_A.weight mean=-6.9881e-05 max=2.6843e-02 min=-2.8591e-02
  76. base_model.model.model.layers.13.mlp.up_proj.lora_B.weight mean=2.4184e-07 max=1.5271e-02 min=-1.5516e-02
  77. base_model.model.model.layers.13.self_attn.k_proj.lora_A.weight mean=2.7265e-05 max=2.9742e-02 min=-3.1240e-02
  78. base_model.model.model.layers.13.self_attn.k_proj.lora_B.weight mean=3.4118e-05 max=1.9908e-02 min=-2.0267e-02
  79. base_model.model.model.layers.13.self_attn.o_proj.lora_A.weight mean=-2.0863e-05 max=2.7373e-02 min=-2.6193e-02
  80. base_model.model.model.layers.13.self_attn.o_proj.lora_B.weight mean=-6.7385e-07 max=1.1899e-02 min=-1.0188e-02
  81. base_model.model.model.layers.13.self_attn.q_proj.lora_A.weight mean=1.5673e-05 max=2.8610e-02 min=-2.9786e-02
  82. base_model.model.model.layers.13.self_attn.q_proj.lora_B.weight mean=1.5836e-06 max=1.9435e-02 min=-1.9008e-02
  83. base_model.model.model.layers.13.self_attn.v_proj.lora_A.weight mean=4.8149e-06 max=2.8814e-02 min=-2.8700e-02
  84. base_model.model.model.layers.13.self_attn.v_proj.lora_B.weight mean=-4.0125e-06 max=9.7950e-03 min=-1.0404e-02
  85. base_model.model.model.layers.14.mlp.down_proj.lora_A.weight mean=1.4809e-05 max=2.6588e-02 min=-2.3696e-02
  86. base_model.model.model.layers.14.mlp.down_proj.lora_B.weight mean=3.3243e-06 max=8.4187e-03 min=-8.3903e-03
  87. base_model.model.model.layers.14.mlp.gate_proj.lora_A.weight mean=3.2663e-05 max=2.5296e-02 min=-3.1894e-02
  88. base_model.model.model.layers.14.mlp.gate_proj.lora_B.weight mean=2.1646e-07 max=1.5646e-02 min=-1.6789e-02
  89. base_model.model.model.layers.14.mlp.up_proj.lora_A.weight mean=-1.6863e-05 max=2.8288e-02 min=-2.6576e-02
  90. base_model.model.model.layers.14.mlp.up_proj.lora_B.weight mean=-1.0767e-07 max=1.3573e-02 min=-1.4968e-02
  91. base_model.model.model.layers.14.self_attn.k_proj.lora_A.weight mean=-2.5730e-05 max=3.5228e-02 min=-3.3059e-02
  92. base_model.model.model.layers.14.self_attn.k_proj.lora_B.weight mean=3.7929e-05 max=2.0823e-02 min=-2.0738e-02
  93. base_model.model.model.layers.14.self_attn.o_proj.lora_A.weight mean=-2.8797e-06 max=2.8647e-02 min=-2.8975e-02
  94. base_model.model.model.layers.14.self_attn.o_proj.lora_B.weight mean=5.5311e-06 max=1.0942e-02 min=-1.0041e-02
  95. base_model.model.model.layers.14.self_attn.q_proj.lora_A.weight mean=-2.4305e-05 max=3.2394e-02 min=-3.1151e-02
  96. base_model.model.model.layers.14.self_attn.q_proj.lora_B.weight mean=-2.7518e-06 max=1.8952e-02 min=-1.9028e-02
  97. base_model.model.model.layers.14.self_attn.v_proj.lora_A.weight mean=-4.2076e-06 max=2.9409e-02 min=-3.1398e-02
  98. base_model.model.model.layers.14.self_attn.v_proj.lora_B.weight mean=-1.5001e-05 max=1.0307e-02 min=-1.1308e-02
  99. base_model.model.model.layers.15.mlp.down_proj.lora_A.weight mean=-5.7814e-06 max=2.7042e-02 min=-2.5151e-02
  100. base_model.model.model.layers.15.mlp.down_proj.lora_B.weight mean=1.1561e-05 max=1.4562e-02 min=-1.3734e-02
  101. base_model.model.model.layers.15.mlp.gate_proj.lora_A.weight mean=-2.4968e-05 max=2.8576e-02 min=-3.0221e-02
  102. base_model.model.model.layers.15.mlp.gate_proj.lora_B.weight mean=1.2379e-05 max=1.9231e-02 min=-1.7414e-02
  103. base_model.model.model.layers.15.mlp.up_proj.lora_A.weight mean=1.4512e-06 max=2.6758e-02 min=-2.8256e-02
  104. base_model.model.model.layers.15.mlp.up_proj.lora_B.weight mean=-4.6946e-06 max=1.3140e-02 min=-1.4797e-02
  105. base_model.model.model.layers.15.self_attn.k_proj.lora_A.weight mean=-1.6117e-05 max=3.4088e-02 min=-3.3671e-02
  106. base_model.model.model.layers.15.self_attn.k_proj.lora_B.weight mean=-1.3887e-05 max=1.7613e-02 min=-1.7371e-02
  107. base_model.model.model.layers.15.self_attn.o_proj.lora_A.weight mean=-1.2800e-05 max=2.8856e-02 min=-2.4801e-02
  108. base_model.model.model.layers.15.self_attn.o_proj.lora_B.weight mean=-2.3902e-06 max=1.1144e-02 min=-1.1622e-02
  109. base_model.model.model.layers.15.self_attn.q_proj.lora_A.weight mean=3.2692e-05 max=3.1372e-02 min=-3.1140e-02
  110. base_model.model.model.layers.15.self_attn.q_proj.lora_B.weight mean=6.4074e-07 max=1.7324e-02 min=-1.9792e-02
  111. base_model.model.model.layers.15.self_attn.v_proj.lora_A.weight mean=2.6887e-05 max=2.5194e-02 min=-2.6983e-02
  112. base_model.model.model.layers.15.self_attn.v_proj.lora_B.weight mean=4.2366e-06 max=9.8187e-03 min=-9.9862e-03
  113. base_model.model.model.layers.16.mlp.down_proj.lora_A.weight mean=1.9759e-06 max=2.5572e-02 min=-2.7588e-02
  114. base_model.model.model.layers.16.mlp.down_proj.lora_B.weight mean=-3.1197e-06 max=1.1160e-02 min=-1.0639e-02
  115. base_model.model.model.layers.16.mlp.gate_proj.lora_A.weight mean=1.8184e-05 max=2.7450e-02 min=-2.7981e-02
  116. base_model.model.model.layers.16.mlp.gate_proj.lora_B.weight mean=6.9417e-06 max=1.8404e-02 min=-1.9222e-02
  117. base_model.model.model.layers.16.mlp.up_proj.lora_A.weight mean=3.7174e-06 max=2.5728e-02 min=-2.5721e-02
  118. base_model.model.model.layers.16.mlp.up_proj.lora_B.weight mean=2.5941e-06 max=1.3831e-02 min=-1.2582e-02
  119. base_model.model.model.layers.16.self_attn.k_proj.lora_A.weight mean=2.5602e-05 max=3.6405e-02 min=-3.1940e-02
  120. base_model.model.model.layers.16.self_attn.k_proj.lora_B.weight mean=-1.3127e-04 max=1.7821e-02 min=-1.6181e-02
  121. base_model.model.model.layers.16.self_attn.o_proj.lora_A.weight mean=-1.6257e-05 max=3.0652e-02 min=-2.9692e-02
  122. base_model.model.model.layers.16.self_attn.o_proj.lora_B.weight mean=-3.7812e-06 max=1.1150e-02 min=-1.1235e-02
  123. base_model.model.model.layers.16.self_attn.q_proj.lora_A.weight mean=-1.9768e-05 max=3.0274e-02 min=-3.0785e-02
  124. base_model.model.model.layers.16.self_attn.q_proj.lora_B.weight mean=-1.5186e-05 max=2.1050e-02 min=-1.9766e-02
  125. base_model.model.model.layers.16.self_attn.v_proj.lora_A.weight mean=-4.2629e-05 max=2.7357e-02 min=-2.9686e-02
  126. base_model.model.model.layers.16.self_attn.v_proj.lora_B.weight mean=7.9753e-06 max=9.1091e-03 min=-9.4297e-03
  127. base_model.model.model.layers.17.mlp.down_proj.lora_A.weight mean=7.1850e-06 max=2.4244e-02 min=-2.4978e-02
  128. base_model.model.model.layers.17.mlp.down_proj.lora_B.weight mean=7.0590e-06 max=1.2705e-02 min=-1.1947e-02
  129. base_model.model.model.layers.17.mlp.gate_proj.lora_A.weight mean=-1.8207e-05 max=2.8975e-02 min=-2.9752e-02
  130. base_model.model.model.layers.17.mlp.gate_proj.lora_B.weight mean=-6.2962e-06 max=1.7033e-02 min=-1.6665e-02
  131. base_model.model.model.layers.17.mlp.up_proj.lora_A.weight mean=-1.8500e-06 max=2.9242e-02 min=-2.8288e-02
  132. base_model.model.model.layers.17.mlp.up_proj.lora_B.weight mean=1.1248e-07 max=1.5635e-02 min=-1.3720e-02
  133. base_model.model.model.layers.17.self_attn.k_proj.lora_A.weight mean=-3.5722e-05 max=3.4960e-02 min=-2.8725e-02
  134. base_model.model.model.layers.17.self_attn.k_proj.lora_B.weight mean=-3.8815e-06 max=1.5666e-02 min=-1.5655e-02
  135. base_model.model.model.layers.17.self_attn.o_proj.lora_A.weight mean=-7.2727e-05 max=2.6572e-02 min=-2.8052e-02
  136. base_model.model.model.layers.17.self_attn.o_proj.lora_B.weight mean=-5.6635e-07 max=1.1121e-02 min=-1.0315e-02
  137. base_model.model.model.layers.17.self_attn.q_proj.lora_A.weight mean=-2.2498e-05 max=3.0121e-02 min=-3.1518e-02
  138. base_model.model.model.layers.17.self_attn.q_proj.lora_B.weight mean=5.5739e-06 max=1.6217e-02 min=-1.7927e-02
  139. base_model.model.model.layers.17.self_attn.v_proj.lora_A.weight mean=5.3985e-06 max=2.7712e-02 min=-2.7204e-02
  140. base_model.model.model.layers.17.self_attn.v_proj.lora_B.weight mean=-1.9901e-05 max=1.2293e-02 min=-1.0486e-02
  141. base_model.model.model.layers.18.mlp.down_proj.lora_A.weight mean=7.3030e-06 max=2.5948e-02 min=-2.6809e-02
  142. base_model.model.model.layers.18.mlp.down_proj.lora_B.weight mean=9.0303e-06 max=1.2848e-02 min=-1.1974e-02
  143. base_model.model.model.layers.18.mlp.gate_proj.lora_A.weight mean=-2.4295e-05 max=2.9854e-02 min=-2.7865e-02
  144. base_model.model.model.layers.18.mlp.gate_proj.lora_B.weight mean=2.2633e-05 max=1.5509e-02 min=-1.5408e-02
  145. base_model.model.model.layers.18.mlp.up_proj.lora_A.weight mean=-7.4729e-05 max=2.5823e-02 min=-2.7101e-02
  146. base_model.model.model.layers.18.mlp.up_proj.lora_B.weight mean=3.2499e-06 max=1.4731e-02 min=-1.6146e-02
  147. base_model.model.model.layers.18.self_attn.k_proj.lora_A.weight mean=2.1466e-05 max=3.1640e-02 min=-3.0240e-02
  148. base_model.model.model.layers.18.self_attn.k_proj.lora_B.weight mean=2.9359e-06 max=2.1875e-02 min=-2.1770e-02
  149. base_model.model.model.layers.18.self_attn.o_proj.lora_A.weight mean=2.6038e-05 max=3.1763e-02 min=-2.9914e-02
  150. base_model.model.model.layers.18.self_attn.o_proj.lora_B.weight mean=8.4757e-06 max=1.2418e-02 min=-1.2004e-02
  151. base_model.model.model.layers.18.self_attn.q_proj.lora_A.weight mean=3.1537e-05 max=2.9873e-02 min=-2.9714e-02
  152. base_model.model.model.layers.18.self_attn.q_proj.lora_B.weight mean=-4.1967e-05 max=2.2410e-02 min=-2.3627e-02
  153. base_model.model.model.layers.18.self_attn.v_proj.lora_A.weight mean=1.8225e-05 max=3.0480e-02 min=-2.8410e-02
  154. base_model.model.model.layers.18.self_attn.v_proj.lora_B.weight mean=-9.0777e-06 max=1.2223e-02 min=-1.1638e-02
  155. base_model.model.model.layers.19.mlp.down_proj.lora_A.weight mean=7.0135e-07 max=2.4102e-02 min=-2.4348e-02
  156. base_model.model.model.layers.19.mlp.down_proj.lora_B.weight mean=-4.7491e-07 max=1.5953e-02 min=-1.3839e-02
  157. base_model.model.model.layers.19.mlp.gate_proj.lora_A.weight mean=-4.2196e-05 max=2.8174e-02 min=-2.8097e-02
  158. base_model.model.model.layers.19.mlp.gate_proj.lora_B.weight mean=1.0821e-06 max=1.5396e-02 min=-1.5403e-02
  159. base_model.model.model.layers.19.mlp.up_proj.lora_A.weight mean=-7.7168e-06 max=2.7637e-02 min=-2.8348e-02
  160. base_model.model.model.layers.19.mlp.up_proj.lora_B.weight mean=-6.8879e-06 max=1.4750e-02 min=-1.4513e-02
  161. base_model.model.model.layers.19.self_attn.k_proj.lora_A.weight mean=-5.0447e-05 max=3.5264e-02 min=-3.1640e-02
  162. base_model.model.model.layers.19.self_attn.k_proj.lora_B.weight mean=-2.3693e-05 max=1.5315e-02 min=-1.7182e-02
  163. base_model.model.model.layers.19.self_attn.o_proj.lora_A.weight mean=9.4396e-07 max=2.6066e-02 min=-2.9310e-02
  164. base_model.model.model.layers.19.self_attn.o_proj.lora_B.weight mean=-2.2685e-06 max=9.6245e-03 min=-1.0243e-02
  165. base_model.model.model.layers.19.self_attn.q_proj.lora_A.weight mean=6.0668e-05 max=3.1278e-02 min=-3.4169e-02
  166. base_model.model.model.layers.19.self_attn.q_proj.lora_B.weight mean=-6.9240e-06 max=1.9916e-02 min=-2.2386e-02
  167. base_model.model.model.layers.19.self_attn.v_proj.lora_A.weight mean=-5.5888e-05 max=2.6856e-02 min=-2.9269e-02
  168. base_model.model.model.layers.19.self_attn.v_proj.lora_B.weight mean=-1.4587e-05 max=1.0213e-02 min=-1.1684e-02
  169. base_model.model.model.layers.2.mlp.down_proj.lora_A.weight mean=3.9755e-06 max=2.6855e-02 min=-2.9399e-02
  170. base_model.model.model.layers.2.mlp.down_proj.lora_B.weight mean=6.1237e-06 max=1.2355e-02 min=-1.3172e-02
  171. base_model.model.model.layers.2.mlp.gate_proj.lora_A.weight mean=-3.2769e-05 max=2.7949e-02 min=-2.9310e-02
  172. base_model.model.model.layers.2.mlp.gate_proj.lora_B.weight mean=7.1056e-06 max=1.6168e-02 min=-1.9679e-02
  173. base_model.model.model.layers.2.mlp.up_proj.lora_A.weight mean=-2.2783e-05 max=2.7392e-02 min=-2.9309e-02
  174. base_model.model.model.layers.2.mlp.up_proj.lora_B.weight mean=2.2342e-06 max=1.7797e-02 min=-1.7899e-02
  175. base_model.model.model.layers.2.self_attn.k_proj.lora_A.weight mean=3.4654e-05 max=3.7211e-02 min=-3.9991e-02
  176. base_model.model.model.layers.2.self_attn.k_proj.lora_B.weight mean=7.9225e-06 max=1.9798e-02 min=-2.1309e-02
  177. base_model.model.model.layers.2.self_attn.o_proj.lora_A.weight mean=-1.2506e-05 max=2.7135e-02 min=-2.5467e-02
  178. base_model.model.model.layers.2.self_attn.o_proj.lora_B.weight mean=-2.2706e-06 max=1.2507e-02 min=-1.1178e-02
  179. base_model.model.model.layers.2.self_attn.q_proj.lora_A.weight mean=-5.0610e-05 max=3.1031e-02 min=-3.0595e-02
  180. base_model.model.model.layers.2.self_attn.q_proj.lora_B.weight mean=5.0058e-06 max=2.2037e-02 min=-2.2130e-02
  181. base_model.model.model.layers.2.self_attn.v_proj.lora_A.weight mean=-2.8576e-06 max=2.5379e-02 min=-2.7682e-02
  182. base_model.model.model.layers.2.self_attn.v_proj.lora_B.weight mean=-4.7151e-08 max=1.5029e-02 min=-1.5721e-02
  183. base_model.model.model.layers.20.mlp.down_proj.lora_A.weight mean=-1.2149e-06 max=2.4570e-02 min=-2.4978e-02
  184. base_model.model.model.layers.20.mlp.down_proj.lora_B.weight mean=8.5468e-06 max=1.6549e-02 min=-1.2349e-02
  185. base_model.model.model.layers.20.mlp.gate_proj.lora_A.weight mean=-9.9661e-07 max=2.6295e-02 min=-2.8889e-02
  186. base_model.model.model.layers.20.mlp.gate_proj.lora_B.weight mean=1.3427e-06 max=1.6759e-02 min=-1.6632e-02
  187. base_model.model.model.layers.20.mlp.up_proj.lora_A.weight mean=-7.7263e-05 max=2.7125e-02 min=-3.1480e-02
  188. base_model.model.model.layers.20.mlp.up_proj.lora_B.weight mean=2.1214e-06 max=1.3195e-02 min=-1.3987e-02
  189. base_model.model.model.layers.20.self_attn.k_proj.lora_A.weight mean=1.6869e-05 max=3.2412e-02 min=-3.2754e-02
  190. base_model.model.model.layers.20.self_attn.k_proj.lora_B.weight mean=-8.5400e-05 max=2.1095e-02 min=-2.6022e-02
  191. base_model.model.model.layers.20.self_attn.o_proj.lora_A.weight mean=-3.2364e-05 max=2.7610e-02 min=-3.0072e-02
  192. base_model.model.model.layers.20.self_attn.o_proj.lora_B.weight mean=-2.8057e-06 max=9.5666e-03 min=-9.9135e-03
  193. base_model.model.model.layers.20.self_attn.q_proj.lora_A.weight mean=-7.4894e-06 max=2.7155e-02 min=-2.7362e-02
  194. base_model.model.model.layers.20.self_attn.q_proj.lora_B.weight mean=5.7444e-06 max=2.0823e-02 min=-2.1431e-02
  195. base_model.model.model.layers.20.self_attn.v_proj.lora_A.weight mean=2.6923e-05 max=2.8122e-02 min=-2.9773e-02
  196. base_model.model.model.layers.20.self_attn.v_proj.lora_B.weight mean=5.5539e-07 max=1.0979e-02 min=-1.2640e-02
  197. base_model.model.model.layers.21.mlp.down_proj.lora_A.weight mean=4.1884e-06 max=2.4395e-02 min=-2.5259e-02
  198. base_model.model.model.layers.21.mlp.down_proj.lora_B.weight mean=5.4126e-06 max=1.5403e-02 min=-1.3346e-02
  199. base_model.model.model.layers.21.mlp.gate_proj.lora_A.weight mean=2.1951e-05 max=3.5242e-02 min=-2.9014e-02
  200. base_model.model.model.layers.21.mlp.gate_proj.lora_B.weight mean=-2.0339e-05 max=2.0365e-02 min=-1.6814e-02
  201. base_model.model.model.layers.21.mlp.up_proj.lora_A.weight mean=-4.7189e-06 max=3.1816e-02 min=-3.0487e-02
  202. base_model.model.model.layers.21.mlp.up_proj.lora_B.weight mean=8.2952e-06 max=1.5635e-02 min=-1.6334e-02
  203. base_model.model.model.layers.21.self_attn.k_proj.lora_A.weight mean=-1.0452e-05 max=3.3823e-02 min=-3.5708e-02
  204. base_model.model.model.layers.21.self_attn.k_proj.lora_B.weight mean=3.5639e-05 max=1.6807e-02 min=-1.6738e-02
  205. base_model.model.model.layers.21.self_attn.o_proj.lora_A.weight mean=2.8856e-05 max=2.6636e-02 min=-2.6870e-02
  206. base_model.model.model.layers.21.self_attn.o_proj.lora_B.weight mean=-2.1544e-06 max=1.1173e-02 min=-1.0178e-02
  207. base_model.model.model.layers.21.self_attn.q_proj.lora_A.weight mean=5.1808e-06 max=3.1074e-02 min=-3.1409e-02
  208. base_model.model.model.layers.21.self_attn.q_proj.lora_B.weight mean=1.0623e-05 max=1.9051e-02 min=-1.9252e-02
  209. base_model.model.model.layers.21.self_attn.v_proj.lora_A.weight mean=4.5826e-05 max=2.5168e-02 min=-2.4394e-02
  210. base_model.model.model.layers.21.self_attn.v_proj.lora_B.weight mean=5.2360e-06 max=9.9213e-03 min=-1.0812e-02
  211. base_model.model.model.layers.22.mlp.down_proj.lora_A.weight mean=-2.7934e-06 max=2.4405e-02 min=-2.2239e-02
  212. base_model.model.model.layers.22.mlp.down_proj.lora_B.weight mean=1.0957e-05 max=1.2722e-02 min=-1.1061e-02
  213. base_model.model.model.layers.22.mlp.gate_proj.lora_A.weight mean=-2.6699e-05 max=2.8071e-02 min=-2.5981e-02
  214. base_model.model.model.layers.22.mlp.gate_proj.lora_B.weight mean=2.1562e-05 max=1.6417e-02 min=-1.5745e-02
  215. base_model.model.model.layers.22.mlp.up_proj.lora_A.weight mean=1.5512e-05 max=2.8820e-02 min=-2.8851e-02
  216. base_model.model.model.layers.22.mlp.up_proj.lora_B.weight mean=-9.6005e-07 max=1.7855e-02 min=-1.9833e-02
  217. base_model.model.model.layers.22.self_attn.k_proj.lora_A.weight mean=-5.5488e-05 max=3.1766e-02 min=-3.6283e-02
  218. base_model.model.model.layers.22.self_attn.k_proj.lora_B.weight mean=-5.7032e-05 max=2.0279e-02 min=-1.7719e-02
  219. base_model.model.model.layers.22.self_attn.o_proj.lora_A.weight mean=-1.2448e-05 max=3.0610e-02 min=-2.7979e-02
  220. base_model.model.model.layers.22.self_attn.o_proj.lora_B.weight mean=2.3523e-06 max=1.3606e-02 min=-1.0385e-02
  221. base_model.model.model.layers.22.self_attn.q_proj.lora_A.weight mean=4.1142e-06 max=3.3047e-02 min=-3.2558e-02
  222. base_model.model.model.layers.22.self_attn.q_proj.lora_B.weight mean=5.4428e-06 max=1.8927e-02 min=-1.8859e-02
  223. base_model.model.model.layers.22.self_attn.v_proj.lora_A.weight mean=2.6483e-05 max=2.5498e-02 min=-2.5555e-02
  224. base_model.model.model.layers.22.self_attn.v_proj.lora_B.weight mean=-1.2036e-05 max=1.3682e-02 min=-1.1239e-02
  225. base_model.model.model.layers.23.mlp.down_proj.lora_A.weight mean=2.0339e-05 max=3.0187e-02 min=-2.7473e-02
  226. base_model.model.model.layers.23.mlp.down_proj.lora_B.weight mean=2.5710e-05 max=1.4043e-02 min=-1.3303e-02
  227. base_model.model.model.layers.23.mlp.gate_proj.lora_A.weight mean=3.5208e-05 max=2.7116e-02 min=-2.7451e-02
  228. base_model.model.model.layers.23.mlp.gate_proj.lora_B.weight mean=-1.0267e-05 max=1.5024e-02 min=-1.6964e-02
  229. base_model.model.model.layers.23.mlp.up_proj.lora_A.weight mean=8.9977e-06 max=2.7192e-02 min=-2.8123e-02
  230. base_model.model.model.layers.23.mlp.up_proj.lora_B.weight mean=2.8494e-06 max=1.3354e-02 min=-1.4250e-02
  231. base_model.model.model.layers.23.self_attn.k_proj.lora_A.weight mean=-8.8764e-06 max=3.3019e-02 min=-3.2037e-02
  232. base_model.model.model.layers.23.self_attn.k_proj.lora_B.weight mean=4.6679e-06 max=2.5710e-02 min=-3.2301e-02
  233. base_model.model.model.layers.23.self_attn.o_proj.lora_A.weight mean=4.5924e-06 max=2.7943e-02 min=-2.6649e-02
  234. base_model.model.model.layers.23.self_attn.o_proj.lora_B.weight mean=7.6930e-06 max=1.2115e-02 min=-1.2799e-02
  235. base_model.model.model.layers.23.self_attn.q_proj.lora_A.weight mean=-2.5167e-05 max=3.6359e-02 min=-3.4099e-02
  236. base_model.model.model.layers.23.self_attn.q_proj.lora_B.weight mean=-1.4731e-05 max=2.1427e-02 min=-2.1400e-02
  237. base_model.model.model.layers.23.self_attn.v_proj.lora_A.weight mean=1.2554e-05 max=2.4086e-02 min=-2.5497e-02
  238. base_model.model.model.layers.23.self_attn.v_proj.lora_B.weight mean=7.5088e-06 max=1.0190e-02 min=-8.7253e-03
  239. base_model.model.model.layers.24.mlp.down_proj.lora_A.weight mean=4.9273e-06 max=2.5159e-02 min=-2.2532e-02
  240. base_model.model.model.layers.24.mlp.down_proj.lora_B.weight mean=8.8253e-06 max=1.0885e-02 min=-1.0021e-02
  241. base_model.model.model.layers.24.mlp.gate_proj.lora_A.weight mean=3.0827e-05 max=2.6258e-02 min=-2.7885e-02
  242. base_model.model.model.layers.24.mlp.gate_proj.lora_B.weight mean=-3.0978e-06 max=1.7722e-02 min=-1.6718e-02
  243. base_model.model.model.layers.24.mlp.up_proj.lora_A.weight mean=2.6558e-05 max=2.8418e-02 min=-2.5606e-02
  244. base_model.model.model.layers.24.mlp.up_proj.lora_B.weight mean=-5.1281e-07 max=1.5131e-02 min=-1.7537e-02
  245. base_model.model.model.layers.24.self_attn.k_proj.lora_A.weight mean=4.5025e-05 max=3.0513e-02 min=-3.0196e-02
  246. base_model.model.model.layers.24.self_attn.k_proj.lora_B.weight mean=-3.5694e-05 max=1.9396e-02 min=-2.3068e-02
  247. base_model.model.model.layers.24.self_attn.o_proj.lora_A.weight mean=5.0010e-05 max=2.7217e-02 min=-2.5160e-02
  248. base_model.model.model.layers.24.self_attn.o_proj.lora_B.weight mean=2.6141e-06 max=1.0698e-02 min=-1.0844e-02
  249. base_model.model.model.layers.24.self_attn.q_proj.lora_A.weight mean=-5.3887e-05 max=2.9186e-02 min=-3.0158e-02
  250. base_model.model.model.layers.24.self_attn.q_proj.lora_B.weight mean=5.3838e-06 max=1.6760e-02 min=-1.7159e-02
  251. base_model.model.model.layers.24.self_attn.v_proj.lora_A.weight mean=4.9427e-05 max=2.5046e-02 min=-2.7576e-02
  252. base_model.model.model.layers.24.self_attn.v_proj.lora_B.weight mean=7.6796e-07 max=8.9598e-03 min=-8.9512e-03
  253. base_model.model.model.layers.25.mlp.down_proj.lora_A.weight mean=-1.2057e-05 max=2.5779e-02 min=-2.5896e-02
  254. base_model.model.model.layers.25.mlp.down_proj.lora_B.weight mean=-4.1581e-07 max=1.2275e-02 min=-1.2952e-02
  255. base_model.model.model.layers.25.mlp.gate_proj.lora_A.weight mean=4.8069e-06 max=2.9942e-02 min=-3.0544e-02
  256. base_model.model.model.layers.25.mlp.gate_proj.lora_B.weight mean=-2.2784e-05 max=1.8339e-02 min=-1.6824e-02
  257. base_model.model.model.layers.25.mlp.up_proj.lora_A.weight mean=-7.4395e-06 max=2.8532e-02 min=-2.9242e-02
  258. base_model.model.model.layers.25.mlp.up_proj.lora_B.weight mean=-2.8469e-06 max=1.5371e-02 min=-1.4430e-02
  259. base_model.model.model.layers.25.self_attn.k_proj.lora_A.weight mean=-5.2315e-05 max=3.0918e-02 min=-3.2034e-02
  260. base_model.model.model.layers.25.self_attn.k_proj.lora_B.weight mean=-1.3292e-05 max=2.4212e-02 min=-2.1981e-02
  261. base_model.model.model.layers.25.self_attn.o_proj.lora_A.weight mean=8.3381e-06 max=2.7462e-02 min=-2.8010e-02
  262. base_model.model.model.layers.25.self_attn.o_proj.lora_B.weight mean=2.8770e-06 max=1.0551e-02 min=-1.0975e-02
  263. base_model.model.model.layers.25.self_attn.q_proj.lora_A.weight mean=-2.4651e-05 max=2.8026e-02 min=-2.8061e-02
  264. base_model.model.model.layers.25.self_attn.q_proj.lora_B.weight mean=1.0978e-05 max=2.0841e-02 min=-2.2060e-02
  265. base_model.model.model.layers.25.self_attn.v_proj.lora_A.weight mean=4.3211e-05 max=2.9627e-02 min=-3.1209e-02
  266. base_model.model.model.layers.25.self_attn.v_proj.lora_B.weight mean=-7.7769e-06 max=9.2278e-03 min=-1.0315e-02
  267. base_model.model.model.layers.26.mlp.down_proj.lora_A.weight mean=2.9661e-05 max=2.4207e-02 min=-2.4901e-02
  268. base_model.model.model.layers.26.mlp.down_proj.lora_B.weight mean=-1.1357e-05 max=1.1463e-02 min=-1.2398e-02
  269. base_model.model.model.layers.26.mlp.gate_proj.lora_A.weight mean=7.6243e-06 max=2.6588e-02 min=-2.8503e-02
  270. base_model.model.model.layers.26.mlp.gate_proj.lora_B.weight mean=-8.0410e-06 max=1.6135e-02 min=-2.0531e-02
  271. base_model.model.model.layers.26.mlp.up_proj.lora_A.weight mean=6.5567e-05 max=2.6265e-02 min=-2.8210e-02
  272. base_model.model.model.layers.26.mlp.up_proj.lora_B.weight mean=5.5523e-06 max=1.2611e-02 min=-1.3963e-02
  273. base_model.model.model.layers.26.self_attn.k_proj.lora_A.weight mean=-3.4453e-05 max=3.1134e-02 min=-3.0933e-02
  274. base_model.model.model.layers.26.self_attn.k_proj.lora_B.weight mean=3.1247e-05 max=1.6576e-02 min=-1.6119e-02
  275. base_model.model.model.layers.26.self_attn.o_proj.lora_A.weight mean=-4.3476e-05 max=2.4876e-02 min=-2.6140e-02
  276. base_model.model.model.layers.26.self_attn.o_proj.lora_B.weight mean=6.5583e-06 max=9.3508e-03 min=-8.6011e-03
  277. base_model.model.model.layers.26.self_attn.q_proj.lora_A.weight mean=5.6765e-05 max=3.0821e-02 min=-3.0972e-02
  278. base_model.model.model.layers.26.self_attn.q_proj.lora_B.weight mean=-9.7146e-06 max=1.6251e-02 min=-1.5885e-02
  279. base_model.model.model.layers.26.self_attn.v_proj.lora_A.weight mean=3.9942e-05 max=2.4621e-02 min=-2.5787e-02
  280. base_model.model.model.layers.26.self_attn.v_proj.lora_B.weight mean=-4.5921e-05 max=1.1038e-02 min=-8.1387e-03
  281. base_model.model.model.layers.27.mlp.down_proj.lora_A.weight mean=1.7046e-05 max=2.4579e-02 min=-2.8424e-02
  282. base_model.model.model.layers.27.mlp.down_proj.lora_B.weight mean=-9.5447e-06 max=1.2982e-02 min=-1.5070e-02
  283. base_model.model.model.layers.27.mlp.gate_proj.lora_A.weight mean=3.9362e-05 max=2.5740e-02 min=-2.7110e-02
  284. base_model.model.model.layers.27.mlp.gate_proj.lora_B.weight mean=3.0384e-06 max=1.5560e-02 min=-1.6000e-02
  285. base_model.model.model.layers.27.mlp.up_proj.lora_A.weight mean=-1.4625e-05 max=2.5727e-02 min=-2.7282e-02
  286. base_model.model.model.layers.27.mlp.up_proj.lora_B.weight mean=-7.2119e-06 max=1.3971e-02 min=-1.7051e-02
  287. base_model.model.model.layers.27.self_attn.k_proj.lora_A.weight mean=2.5820e-06 max=2.8764e-02 min=-3.1227e-02
  288. base_model.model.model.layers.27.self_attn.k_proj.lora_B.weight mean=-4.8523e-05 max=1.8176e-02 min=-1.6265e-02
  289. base_model.model.model.layers.27.self_attn.o_proj.lora_A.weight mean=1.9728e-05 max=2.5990e-02 min=-2.4951e-02
  290. base_model.model.model.layers.27.self_attn.o_proj.lora_B.weight mean=-1.3091e-06 max=1.0347e-02 min=-9.4450e-03
  291. base_model.model.model.layers.27.self_attn.q_proj.lora_A.weight mean=-5.4348e-05 max=2.9644e-02 min=-3.0783e-02
  292. base_model.model.model.layers.27.self_attn.q_proj.lora_B.weight mean=1.1237e-05 max=1.3009e-02 min=-1.1994e-02
  293. base_model.model.model.layers.27.self_attn.v_proj.lora_A.weight mean=-1.0152e-04 max=2.5706e-02 min=-2.7754e-02
  294. base_model.model.model.layers.27.self_attn.v_proj.lora_B.weight mean=1.2025e-05 max=1.0190e-02 min=-9.1751e-03
  295. base_model.model.model.layers.28.mlp.down_proj.lora_A.weight mean=6.0565e-06 max=2.4491e-02 min=-2.4490e-02
  296. base_model.model.model.layers.28.mlp.down_proj.lora_B.weight mean=2.6210e-06 max=1.4053e-02 min=-1.8063e-02
  297. base_model.model.model.layers.28.mlp.gate_proj.lora_A.weight mean=1.2152e-05 max=2.6598e-02 min=-2.6265e-02
  298. base_model.model.model.layers.28.mlp.gate_proj.lora_B.weight mean=-4.0343e-06 max=1.7571e-02 min=-1.7895e-02
  299. base_model.model.model.layers.28.mlp.up_proj.lora_A.weight mean=3.6500e-05 max=2.7056e-02 min=-2.6513e-02
  300. base_model.model.model.layers.28.mlp.up_proj.lora_B.weight mean=1.1355e-05 max=1.6338e-02 min=-1.4287e-02
  301. base_model.model.model.layers.28.self_attn.k_proj.lora_A.weight mean=3.2397e-06 max=3.2831e-02 min=-3.1001e-02
  302. base_model.model.model.layers.28.self_attn.k_proj.lora_B.weight mean=-2.7180e-06 max=1.9354e-02 min=-1.9037e-02
  303. base_model.model.model.layers.28.self_attn.o_proj.lora_A.weight mean=4.7170e-05 max=2.8402e-02 min=-2.9151e-02
  304. base_model.model.model.layers.28.self_attn.o_proj.lora_B.weight mean=2.0632e-06 max=1.0776e-02 min=-1.1663e-02
  305. base_model.model.model.layers.28.self_attn.q_proj.lora_A.weight mean=5.3029e-05 max=2.9408e-02 min=-2.9968e-02
  306. base_model.model.model.layers.28.self_attn.q_proj.lora_B.weight mean=-1.4255e-05 max=2.4006e-02 min=-2.3208e-02
  307. base_model.model.model.layers.28.self_attn.v_proj.lora_A.weight mean=2.9765e-05 max=2.7444e-02 min=-2.7427e-02
  308. base_model.model.model.layers.28.self_attn.v_proj.lora_B.weight mean=-8.1898e-05 max=1.0210e-02 min=-9.9564e-03
  309. base_model.model.model.layers.29.mlp.down_proj.lora_A.weight mean=1.0373e-05 max=2.4310e-02 min=-2.5605e-02
  310. base_model.model.model.layers.29.mlp.down_proj.lora_B.weight mean=-4.4703e-06 max=1.3858e-02 min=-1.2030e-02
  311. base_model.model.model.layers.29.mlp.gate_proj.lora_A.weight mean=3.2243e-05 max=2.8574e-02 min=-2.7339e-02
  312. base_model.model.model.layers.29.mlp.gate_proj.lora_B.weight mean=-5.9607e-07 max=1.6476e-02 min=-1.7497e-02
  313. base_model.model.model.layers.29.mlp.up_proj.lora_A.weight mean=6.2599e-06 max=2.5965e-02 min=-2.4635e-02
  314. base_model.model.model.layers.29.mlp.up_proj.lora_B.weight mean=2.7766e-06 max=1.3659e-02 min=-1.3971e-02
  315. base_model.model.model.layers.29.self_attn.k_proj.lora_A.weight mean=3.9641e-05 max=3.5511e-02 min=-4.0480e-02
  316. base_model.model.model.layers.29.self_attn.k_proj.lora_B.weight mean=-7.9725e-06 max=2.1898e-02 min=-2.2894e-02
  317. base_model.model.model.layers.29.self_attn.o_proj.lora_A.weight mean=-9.0119e-05 max=2.8580e-02 min=-2.6498e-02
  318. base_model.model.model.layers.29.self_attn.o_proj.lora_B.weight mean=3.6623e-06 max=1.0570e-02 min=-1.1112e-02
  319. base_model.model.model.layers.29.self_attn.q_proj.lora_A.weight mean=2.3807e-05 max=3.2027e-02 min=-3.0848e-02
  320. base_model.model.model.layers.29.self_attn.q_proj.lora_B.weight mean=-1.4229e-06 max=1.9334e-02 min=-2.0264e-02
  321. base_model.model.model.layers.29.self_attn.v_proj.lora_A.weight mean=-3.1179e-05 max=2.6321e-02 min=-2.7560e-02
  322. base_model.model.model.layers.29.self_attn.v_proj.lora_B.weight mean=-2.9655e-05 max=1.0096e-02 min=-9.5607e-03
  323. base_model.model.model.layers.3.mlp.down_proj.lora_A.weight mean=2.9507e-06 max=2.5375e-02 min=-2.4238e-02
  324. base_model.model.model.layers.3.mlp.down_proj.lora_B.weight mean=-2.5916e-06 max=1.2012e-02 min=-1.2757e-02
  325. base_model.model.model.layers.3.mlp.gate_proj.lora_A.weight mean=9.3450e-06 max=2.9276e-02 min=-2.6797e-02
  326. base_model.model.model.layers.3.mlp.gate_proj.lora_B.weight mean=-1.9482e-07 max=1.8539e-02 min=-1.7550e-02
  327. base_model.model.model.layers.3.mlp.up_proj.lora_A.weight mean=2.2725e-06 max=2.9168e-02 min=-2.9673e-02
  328. base_model.model.model.layers.3.mlp.up_proj.lora_B.weight mean=1.5048e-05 max=1.8278e-02 min=-1.7175e-02
  329. base_model.model.model.layers.3.self_attn.k_proj.lora_A.weight mean=-2.2352e-05 max=3.3624e-02 min=-3.4192e-02
  330. base_model.model.model.layers.3.self_attn.k_proj.lora_B.weight mean=2.4093e-05 max=2.2350e-02 min=-1.9562e-02
  331. base_model.model.model.layers.3.self_attn.o_proj.lora_A.weight mean=2.8513e-05 max=2.6932e-02 min=-2.8119e-02
  332. base_model.model.model.layers.3.self_attn.o_proj.lora_B.weight mean=-4.4825e-07 max=1.3302e-02 min=-1.1531e-02
  333. base_model.model.model.layers.3.self_attn.q_proj.lora_A.weight mean=3.5380e-05 max=3.4416e-02 min=-3.6851e-02
  334. base_model.model.model.layers.3.self_attn.q_proj.lora_B.weight mean=-1.3035e-06 max=2.0794e-02 min=-2.2616e-02
  335. base_model.model.model.layers.3.self_attn.v_proj.lora_A.weight mean=1.2169e-06 max=2.8735e-02 min=-2.7425e-02
  336. base_model.model.model.layers.3.self_attn.v_proj.lora_B.weight mean=3.4716e-05 max=9.8075e-03 min=-9.8019e-03
  337. base_model.model.model.layers.30.mlp.down_proj.lora_A.weight mean=-1.5906e-05 max=3.0104e-02 min=-2.5431e-02
  338. base_model.model.model.layers.30.mlp.down_proj.lora_B.weight mean=1.3890e-05 max=1.6380e-02 min=-1.3895e-02
  339. base_model.model.model.layers.30.mlp.gate_proj.lora_A.weight mean=4.1495e-05 max=2.6457e-02 min=-2.7533e-02
  340. base_model.model.model.layers.30.mlp.gate_proj.lora_B.weight mean=-5.2160e-06 max=1.7515e-02 min=-1.6087e-02
  341. base_model.model.model.layers.30.mlp.up_proj.lora_A.weight mean=-3.0474e-05 max=2.8129e-02 min=-2.7729e-02
  342. base_model.model.model.layers.30.mlp.up_proj.lora_B.weight mean=4.0002e-06 max=1.5347e-02 min=-1.4868e-02
  343. base_model.model.model.layers.30.self_attn.k_proj.lora_A.weight mean=-3.5416e-05 max=3.2701e-02 min=-3.2576e-02
  344. base_model.model.model.layers.30.self_attn.k_proj.lora_B.weight mean=-3.6405e-06 max=1.6575e-02 min=-1.8021e-02
  345. base_model.model.model.layers.30.self_attn.o_proj.lora_A.weight mean=-1.0350e-07 max=2.9328e-02 min=-3.1257e-02
  346. base_model.model.model.layers.30.self_attn.o_proj.lora_B.weight mean=-2.3113e-06 max=1.4288e-02 min=-1.2787e-02
  347. base_model.model.model.layers.30.self_attn.q_proj.lora_A.weight mean=-3.4330e-05 max=3.0696e-02 min=-3.0921e-02
  348. base_model.model.model.layers.30.self_attn.q_proj.lora_B.weight mean=9.2802e-06 max=2.1609e-02 min=-2.1676e-02
  349. base_model.model.model.layers.30.self_attn.v_proj.lora_A.weight mean=4.5178e-05 max=2.5982e-02 min=-2.5407e-02
  350. base_model.model.model.layers.30.self_attn.v_proj.lora_B.weight mean=-4.2068e-05 max=1.0079e-02 min=-9.2186e-03
  351. base_model.model.model.layers.31.mlp.down_proj.lora_A.weight mean=6.0077e-06 max=2.5966e-02 min=-2.4818e-02
  352. base_model.model.model.layers.31.mlp.down_proj.lora_B.weight mean=2.7883e-05 max=1.4899e-02 min=-1.4641e-02
  353. base_model.model.model.layers.31.mlp.gate_proj.lora_A.weight mean=-1.0108e-05 max=2.6342e-02 min=-2.8250e-02
  354. base_model.model.model.layers.31.mlp.gate_proj.lora_B.weight mean=2.4644e-06 max=1.7484e-02 min=-2.0074e-02
  355. base_model.model.model.layers.31.mlp.up_proj.lora_A.weight mean=-6.3635e-06 max=2.7631e-02 min=-2.6912e-02
  356. base_model.model.model.layers.31.mlp.up_proj.lora_B.weight mean=-1.5097e-06 max=1.6549e-02 min=-1.6179e-02
  357. base_model.model.model.layers.31.self_attn.k_proj.lora_A.weight mean=-1.7360e-05 max=3.1606e-02 min=-3.3816e-02
  358. base_model.model.model.layers.31.self_attn.k_proj.lora_B.weight mean=-2.4173e-05 max=1.8096e-02 min=-1.6983e-02
  359. base_model.model.model.layers.31.self_attn.o_proj.lora_A.weight mean=7.6746e-05 max=2.9176e-02 min=-2.9041e-02
  360. base_model.model.model.layers.31.self_attn.o_proj.lora_B.weight mean=-2.1600e-06 max=1.0994e-02 min=-1.3398e-02
  361. base_model.model.model.layers.31.self_attn.q_proj.lora_A.weight mean=4.7075e-05 max=2.7909e-02 min=-3.1059e-02
  362. base_model.model.model.layers.31.self_attn.q_proj.lora_B.weight mean=1.6351e-05 max=2.3627e-02 min=-2.1850e-02
  363. base_model.model.model.layers.31.self_attn.v_proj.lora_A.weight mean=-2.0587e-05 max=2.7863e-02 min=-2.5739e-02
  364. base_model.model.model.layers.31.self_attn.v_proj.lora_B.weight mean=3.5430e-05 max=1.0657e-02 min=-1.0063e-02
  365. base_model.model.model.layers.32.mlp.down_proj.lora_A.weight mean=1.2160e-05 max=2.6901e-02 min=-2.5570e-02
  366. base_model.model.model.layers.32.mlp.down_proj.lora_B.weight mean=6.9996e-06 max=1.4412e-02 min=-1.3575e-02
  367. base_model.model.model.layers.32.mlp.gate_proj.lora_A.weight mean=7.1435e-05 max=2.9792e-02 min=-2.8920e-02
  368. base_model.model.model.layers.32.mlp.gate_proj.lora_B.weight mean=1.0567e-05 max=2.1833e-02 min=-2.3155e-02
  369. base_model.model.model.layers.32.mlp.up_proj.lora_A.weight mean=-2.5636e-05 max=2.9436e-02 min=-2.6456e-02
  370. base_model.model.model.layers.32.mlp.up_proj.lora_B.weight mean=5.0847e-06 max=2.0072e-02 min=-2.0681e-02
  371. base_model.model.model.layers.32.self_attn.k_proj.lora_A.weight mean=-3.0067e-05 max=2.9971e-02 min=-3.0189e-02
  372. base_model.model.model.layers.32.self_attn.k_proj.lora_B.weight mean=3.1666e-05 max=1.6778e-02 min=-1.6100e-02
  373. base_model.model.model.layers.32.self_attn.o_proj.lora_A.weight mean=-1.7783e-06 max=2.7103e-02 min=-2.8795e-02
  374. base_model.model.model.layers.32.self_attn.o_proj.lora_B.weight mean=-8.0202e-06 max=1.2075e-02 min=-1.2194e-02
  375. base_model.model.model.layers.32.self_attn.q_proj.lora_A.weight mean=2.5452e-05 max=2.8666e-02 min=-2.9219e-02
  376. base_model.model.model.layers.32.self_attn.q_proj.lora_B.weight mean=4.4380e-07 max=1.5917e-02 min=-1.4622e-02
  377. base_model.model.model.layers.32.self_attn.v_proj.lora_A.weight mean=-2.5298e-05 max=2.9690e-02 min=-2.6503e-02
  378. base_model.model.model.layers.32.self_attn.v_proj.lora_B.weight mean=-1.5823e-05 max=1.0415e-02 min=-1.6776e-02
  379. base_model.model.model.layers.33.mlp.down_proj.lora_A.weight mean=1.7253e-06 max=2.4727e-02 min=-2.3615e-02
  380. base_model.model.model.layers.33.mlp.down_proj.lora_B.weight mean=6.0115e-06 max=1.3569e-02 min=-1.4757e-02
  381. base_model.model.model.layers.33.mlp.gate_proj.lora_A.weight mean=-9.2836e-06 max=2.7458e-02 min=-2.6667e-02
  382. base_model.model.model.layers.33.mlp.gate_proj.lora_B.weight mean=6.4346e-06 max=1.8445e-02 min=-1.9761e-02
  383. base_model.model.model.layers.33.mlp.up_proj.lora_A.weight mean=-2.2600e-06 max=2.6269e-02 min=-2.8418e-02
  384. base_model.model.model.layers.33.mlp.up_proj.lora_B.weight mean=2.5973e-06 max=1.6907e-02 min=-2.0253e-02
  385. base_model.model.model.layers.33.self_attn.k_proj.lora_A.weight mean=2.2415e-05 max=3.2267e-02 min=-3.1522e-02
  386. base_model.model.model.layers.33.self_attn.k_proj.lora_B.weight mean=-1.4961e-04 max=2.0394e-02 min=-1.9810e-02
  387. base_model.model.model.layers.33.self_attn.o_proj.lora_A.weight mean=-2.4497e-05 max=2.7520e-02 min=-2.9699e-02
  388. base_model.model.model.layers.33.self_attn.o_proj.lora_B.weight mean=2.2051e-06 max=1.0774e-02 min=-1.3095e-02
  389. base_model.model.model.layers.33.self_attn.q_proj.lora_A.weight mean=-6.2503e-06 max=2.7257e-02 min=-2.8871e-02
  390. base_model.model.model.layers.33.self_attn.q_proj.lora_B.weight mean=2.0171e-06 max=1.8580e-02 min=-1.9639e-02
  391. base_model.model.model.layers.33.self_attn.v_proj.lora_A.weight mean=-2.6604e-05 max=2.4938e-02 min=-2.4982e-02
  392. base_model.model.model.layers.33.self_attn.v_proj.lora_B.weight mean=1.1949e-05 max=9.9651e-03 min=-1.1377e-02
  393. base_model.model.model.layers.34.mlp.down_proj.lora_A.weight mean=-3.4925e-06 max=2.7732e-02 min=-2.8590e-02
  394. base_model.model.model.layers.34.mlp.down_proj.lora_B.weight mean=1.0045e-05 max=1.8419e-02 min=-1.6762e-02
  395. base_model.model.model.layers.34.mlp.gate_proj.lora_A.weight mean=2.0916e-05 max=2.6656e-02 min=-2.9857e-02
  396. base_model.model.model.layers.34.mlp.gate_proj.lora_B.weight mean=-4.9912e-06 max=1.7184e-02 min=-1.9754e-02
  397. base_model.model.model.layers.34.mlp.up_proj.lora_A.weight mean=-5.0941e-05 max=3.0070e-02 min=-3.0583e-02
  398. base_model.model.model.layers.34.mlp.up_proj.lora_B.weight mean=-3.2291e-06 max=2.3764e-02 min=-1.8966e-02
  399. base_model.model.model.layers.34.self_attn.k_proj.lora_A.weight mean=-1.5949e-05 max=3.5243e-02 min=-3.0858e-02
  400. base_model.model.model.layers.34.self_attn.k_proj.lora_B.weight mean=-7.3561e-06 max=1.8423e-02 min=-1.6795e-02
  401. base_model.model.model.layers.34.self_attn.o_proj.lora_A.weight mean=-3.9608e-05 max=2.8544e-02 min=-2.7325e-02
  402. base_model.model.model.layers.34.self_attn.o_proj.lora_B.weight mean=-1.1639e-05 max=1.1965e-02 min=-1.0965e-02
  403. base_model.model.model.layers.34.self_attn.q_proj.lora_A.weight mean=-3.8828e-06 max=3.3353e-02 min=-3.2618e-02
  404. base_model.model.model.layers.34.self_attn.q_proj.lora_B.weight mean=-3.0024e-06 max=1.7180e-02 min=-1.9217e-02
  405. base_model.model.model.layers.34.self_attn.v_proj.lora_A.weight mean=-3.1103e-05 max=2.7211e-02 min=-2.8878e-02
  406. base_model.model.model.layers.34.self_attn.v_proj.lora_B.weight mean=-3.2404e-05 max=1.2419e-02 min=-1.1372e-02
  407. base_model.model.model.layers.35.mlp.down_proj.lora_A.weight mean=-1.9239e-06 max=2.8761e-02 min=-2.5830e-02
  408. base_model.model.model.layers.35.mlp.down_proj.lora_B.weight mean=-5.7818e-07 max=1.4221e-02 min=-1.5223e-02
  409. base_model.model.model.layers.35.mlp.gate_proj.lora_A.weight mean=-9.0731e-06 max=2.7261e-02 min=-2.7961e-02
  410. base_model.model.model.layers.35.mlp.gate_proj.lora_B.weight mean=1.7986e-05 max=1.7905e-02 min=-1.9130e-02
  411. base_model.model.model.layers.35.mlp.up_proj.lora_A.weight mean=-1.6163e-05 max=2.9300e-02 min=-3.1732e-02
  412. base_model.model.model.layers.35.mlp.up_proj.lora_B.weight mean=-2.1681e-07 max=2.0928e-02 min=-1.9800e-02
  413. base_model.model.model.layers.35.self_attn.k_proj.lora_A.weight mean=7.2182e-05 max=3.1380e-02 min=-3.4601e-02
  414. base_model.model.model.layers.35.self_attn.k_proj.lora_B.weight mean=-3.1736e-05 max=1.7392e-02 min=-1.9074e-02
  415. base_model.model.model.layers.35.self_attn.o_proj.lora_A.weight mean=3.6675e-07 max=2.7133e-02 min=-2.7766e-02
  416. base_model.model.model.layers.35.self_attn.o_proj.lora_B.weight mean=-7.9105e-06 max=1.0702e-02 min=-1.2400e-02
  417. base_model.model.model.layers.35.self_attn.q_proj.lora_A.weight mean=-3.9315e-05 max=2.9332e-02 min=-2.9348e-02
  418. base_model.model.model.layers.35.self_attn.q_proj.lora_B.weight mean=1.0593e-05 max=1.6961e-02 min=-1.7270e-02
  419. base_model.model.model.layers.35.self_attn.v_proj.lora_A.weight mean=-2.7477e-05 max=2.7015e-02 min=-2.6222e-02
  420. base_model.model.model.layers.35.self_attn.v_proj.lora_B.weight mean=1.7999e-06 max=1.1775e-02 min=-1.1332e-02
  421. base_model.model.model.layers.36.mlp.down_proj.lora_A.weight mean=-1.0388e-05 max=2.9114e-02 min=-2.5647e-02
  422. base_model.model.model.layers.36.mlp.down_proj.lora_B.weight mean=7.9227e-06 max=1.5050e-02 min=-1.4138e-02
  423. base_model.model.model.layers.36.mlp.gate_proj.lora_A.weight mean=7.5391e-06 max=2.6253e-02 min=-2.8256e-02
  424. base_model.model.model.layers.36.mlp.gate_proj.lora_B.weight mean=-2.1052e-05 max=2.0603e-02 min=-2.1944e-02
  425. base_model.model.model.layers.36.mlp.up_proj.lora_A.weight mean=-3.2559e-05 max=2.8921e-02 min=-2.7737e-02
  426. base_model.model.model.layers.36.mlp.up_proj.lora_B.weight mean=-7.2110e-07 max=1.7926e-02 min=-1.9824e-02
  427. base_model.model.model.layers.36.self_attn.k_proj.lora_A.weight mean=-4.4187e-05 max=3.0509e-02 min=-3.1610e-02
  428. base_model.model.model.layers.36.self_attn.k_proj.lora_B.weight mean=4.3625e-06 max=1.8996e-02 min=-1.5583e-02
  429. base_model.model.model.layers.36.self_attn.o_proj.lora_A.weight mean=2.5054e-06 max=3.4489e-02 min=-2.8023e-02
  430. base_model.model.model.layers.36.self_attn.o_proj.lora_B.weight mean=1.3564e-05 max=1.1892e-02 min=-1.1175e-02
  431. base_model.model.model.layers.36.self_attn.q_proj.lora_A.weight mean=-2.5663e-05 max=3.0916e-02 min=-3.0849e-02
  432. base_model.model.model.layers.36.self_attn.q_proj.lora_B.weight mean=-6.7126e-06 max=1.9706e-02 min=-1.9065e-02
  433. base_model.model.model.layers.36.self_attn.v_proj.lora_A.weight mean=-2.1163e-05 max=2.5293e-02 min=-2.5618e-02
  434. base_model.model.model.layers.36.self_attn.v_proj.lora_B.weight mean=-2.3212e-05 max=1.1431e-02 min=-1.1444e-02
  435. base_model.model.model.layers.37.mlp.down_proj.lora_A.weight mean=8.4188e-06 max=2.8703e-02 min=-3.5322e-02
  436. base_model.model.model.layers.37.mlp.down_proj.lora_B.weight mean=7.3929e-06 max=1.5657e-02 min=-1.8055e-02
  437. base_model.model.model.layers.37.mlp.gate_proj.lora_A.weight mean=2.7681e-05 max=3.2729e-02 min=-3.1631e-02
  438. base_model.model.model.layers.37.mlp.gate_proj.lora_B.weight mean=-6.7257e-06 max=2.1385e-02 min=-2.2246e-02
  439. base_model.model.model.layers.37.mlp.up_proj.lora_A.weight mean=3.7762e-05 max=2.8248e-02 min=-2.6530e-02
  440. base_model.model.model.layers.37.mlp.up_proj.lora_B.weight mean=-2.6729e-06 max=2.4035e-02 min=-2.5713e-02
  441. base_model.model.model.layers.37.self_attn.k_proj.lora_A.weight mean=-5.4925e-05 max=3.2506e-02 min=-3.1044e-02
  442. base_model.model.model.layers.37.self_attn.k_proj.lora_B.weight mean=8.6357e-06 max=1.8608e-02 min=-1.7511e-02
  443. base_model.model.model.layers.37.self_attn.o_proj.lora_A.weight mean=-2.4519e-05 max=3.3205e-02 min=-2.9306e-02
  444. base_model.model.model.layers.37.self_attn.o_proj.lora_B.weight mean=-1.2920e-06 max=1.2705e-02 min=-1.3119e-02
  445. base_model.model.model.layers.37.self_attn.q_proj.lora_A.weight mean=-1.8224e-05 max=3.0179e-02 min=-3.0845e-02
  446. base_model.model.model.layers.37.self_attn.q_proj.lora_B.weight mean=2.2220e-05 max=1.5454e-02 min=-1.5664e-02
  447. base_model.model.model.layers.37.self_attn.v_proj.lora_A.weight mean=-2.9678e-05 max=3.3254e-02 min=-2.7787e-02
  448. base_model.model.model.layers.37.self_attn.v_proj.lora_B.weight mean=2.0030e-05 max=1.7065e-02 min=-1.3704e-02
  449. base_model.model.model.layers.38.mlp.down_proj.lora_A.weight mean=-8.4722e-06 max=2.7722e-02 min=-2.8993e-02
  450. base_model.model.model.layers.38.mlp.down_proj.lora_B.weight mean=-1.4537e-05 max=1.5718e-02 min=-2.1120e-02
  451. base_model.model.model.layers.38.mlp.gate_proj.lora_A.weight mean=6.6779e-06 max=2.9653e-02 min=-3.4700e-02
  452. base_model.model.model.layers.38.mlp.gate_proj.lora_B.weight mean=3.2718e-06 max=2.6869e-02 min=-2.1000e-02
  453. base_model.model.model.layers.38.mlp.up_proj.lora_A.weight mean=-4.5926e-06 max=2.9753e-02 min=-3.1798e-02
  454. base_model.model.model.layers.38.mlp.up_proj.lora_B.weight mean=2.1762e-06 max=3.2062e-02 min=-3.6707e-02
  455. base_model.model.model.layers.38.self_attn.k_proj.lora_A.weight mean=-3.9538e-05 max=3.0793e-02 min=-3.1559e-02
  456. base_model.model.model.layers.38.self_attn.k_proj.lora_B.weight mean=-1.3062e-05 max=1.9552e-02 min=-1.9934e-02
  457. base_model.model.model.layers.38.self_attn.o_proj.lora_A.weight mean=3.1961e-05 max=2.9850e-02 min=-3.0222e-02
  458. base_model.model.model.layers.38.self_attn.o_proj.lora_B.weight mean=-3.3308e-06 max=1.5258e-02 min=-1.5064e-02
  459. base_model.model.model.layers.38.self_attn.q_proj.lora_A.weight mean=-2.5350e-05 max=2.9226e-02 min=-2.9488e-02
  460. base_model.model.model.layers.38.self_attn.q_proj.lora_B.weight mean=-2.2643e-06 max=2.0284e-02 min=-1.9907e-02
  461. base_model.model.model.layers.38.self_attn.v_proj.lora_A.weight mean=-2.1268e-05 max=2.8284e-02 min=-2.7603e-02
  462. base_model.model.model.layers.38.self_attn.v_proj.lora_B.weight mean=-1.3855e-05 max=1.2877e-02 min=-1.1281e-02
  463. base_model.model.model.layers.39.mlp.down_proj.lora_A.weight mean=9.0797e-06 max=2.9543e-02 min=-3.0727e-02
  464. base_model.model.model.layers.39.mlp.down_proj.lora_B.weight mean=8.6772e-07 max=1.7376e-02 min=-1.5416e-02
  465. base_model.model.model.layers.39.mlp.gate_proj.lora_A.weight mean=-2.4450e-06 max=3.0714e-02 min=-3.1174e-02
  466. base_model.model.model.layers.39.mlp.gate_proj.lora_B.weight mean=1.2603e-05 max=2.2622e-02 min=-2.2298e-02
  467. base_model.model.model.layers.39.mlp.up_proj.lora_A.weight mean=-2.0249e-05 max=3.2402e-02 min=-3.3193e-02
  468. base_model.model.model.layers.39.mlp.up_proj.lora_B.weight mean=-2.2506e-06 max=4.1657e-02 min=-5.5173e-02
  469. base_model.model.model.layers.39.self_attn.k_proj.lora_A.weight mean=-4.2712e-07 max=3.0466e-02 min=-3.2239e-02
  470. base_model.model.model.layers.39.self_attn.k_proj.lora_B.weight mean=1.2101e-05 max=1.6307e-02 min=-1.5313e-02
  471. base_model.model.model.layers.39.self_attn.o_proj.lora_A.weight mean=-2.6815e-05 max=3.2403e-02 min=-3.2662e-02
  472. base_model.model.model.layers.39.self_attn.o_proj.lora_B.weight mean=-4.7395e-06 max=1.4137e-02 min=-1.5935e-02
  473. base_model.model.model.layers.39.self_attn.q_proj.lora_A.weight mean=3.6408e-05 max=2.8324e-02 min=-2.8381e-02
  474. base_model.model.model.layers.39.self_attn.q_proj.lora_B.weight mean=-3.7447e-05 max=1.8536e-02 min=-1.9734e-02
  475. base_model.model.model.layers.39.self_attn.v_proj.lora_A.weight mean=-6.5666e-06 max=2.8587e-02 min=-3.2110e-02
  476. base_model.model.model.layers.39.self_attn.v_proj.lora_B.weight mean=-3.5520e-06 max=1.3294e-02 min=-1.2815e-02
  477. base_model.model.model.layers.4.mlp.down_proj.lora_A.weight mean=1.7968e-05 max=2.7650e-02 min=-2.5744e-02
  478. base_model.model.model.layers.4.mlp.down_proj.lora_B.weight mean=2.5227e-06 max=1.2521e-02 min=-1.3316e-02
  479. base_model.model.model.layers.4.mlp.gate_proj.lora_A.weight mean=-2.5628e-05 max=2.9146e-02 min=-3.1429e-02
  480. base_model.model.model.layers.4.mlp.gate_proj.lora_B.weight mean=-3.6695e-06 max=1.5413e-02 min=-1.5582e-02
  481. base_model.model.model.layers.4.mlp.up_proj.lora_A.weight mean=1.9795e-05 max=2.9018e-02 min=-3.0517e-02
  482. base_model.model.model.layers.4.mlp.up_proj.lora_B.weight mean=-1.6467e-06 max=1.5898e-02 min=-1.6860e-02
  483. base_model.model.model.layers.4.self_attn.k_proj.lora_A.weight mean=6.5804e-06 max=3.1216e-02 min=-3.1018e-02
  484. base_model.model.model.layers.4.self_attn.k_proj.lora_B.weight mean=-8.0676e-07 max=2.2633e-02 min=-2.6387e-02
  485. base_model.model.model.layers.4.self_attn.o_proj.lora_A.weight mean=-2.5323e-05 max=2.6442e-02 min=-2.7609e-02
  486. base_model.model.model.layers.4.self_attn.o_proj.lora_B.weight mean=9.0442e-06 max=1.4044e-02 min=-1.3988e-02
  487. base_model.model.model.layers.4.self_attn.q_proj.lora_A.weight mean=-6.6044e-06 max=3.2222e-02 min=-3.3066e-02
  488. base_model.model.model.layers.4.self_attn.q_proj.lora_B.weight mean=5.0634e-06 max=2.3694e-02 min=-2.6226e-02
  489. base_model.model.model.layers.4.self_attn.v_proj.lora_A.weight mean=-4.0600e-05 max=2.7888e-02 min=-3.0569e-02
  490. base_model.model.model.layers.4.self_attn.v_proj.lora_B.weight mean=-6.8958e-06 max=1.1757e-02 min=-1.1109e-02
  491. base_model.model.model.layers.5.mlp.down_proj.lora_A.weight mean=9.0888e-06 max=2.5855e-02 min=-2.6278e-02
  492. base_model.model.model.layers.5.mlp.down_proj.lora_B.weight mean=6.3794e-06 max=1.3677e-02 min=-1.2681e-02
  493. base_model.model.model.layers.5.mlp.gate_proj.lora_A.weight mean=2.1366e-05 max=3.0800e-02 min=-2.7939e-02
  494. base_model.model.model.layers.5.mlp.gate_proj.lora_B.weight mean=-1.4621e-06 max=2.0299e-02 min=-1.9518e-02
  495. base_model.model.model.layers.5.mlp.up_proj.lora_A.weight mean=1.0964e-05 max=2.8875e-02 min=-3.1672e-02
  496. base_model.model.model.layers.5.mlp.up_proj.lora_B.weight mean=2.3943e-07 max=1.5662e-02 min=-1.5671e-02
  497. base_model.model.model.layers.5.self_attn.k_proj.lora_A.weight mean=-2.2625e-05 max=3.4442e-02 min=-3.6796e-02
  498. base_model.model.model.layers.5.self_attn.k_proj.lora_B.weight mean=7.0188e-05 max=1.8492e-02 min=-1.9909e-02
  499. base_model.model.model.layers.5.self_attn.o_proj.lora_A.weight mean=5.4757e-05 max=2.6694e-02 min=-2.7010e-02
  500. base_model.model.model.layers.5.self_attn.o_proj.lora_B.weight mean=1.1492e-05 max=1.2432e-02 min=-1.2261e-02
  501. base_model.model.model.layers.5.self_attn.q_proj.lora_A.weight mean=-2.0661e-05 max=3.3176e-02 min=-3.3351e-02
  502. base_model.model.model.layers.5.self_attn.q_proj.lora_B.weight mean=-1.0230e-05 max=2.3146e-02 min=-2.4217e-02
  503. base_model.model.model.layers.5.self_attn.v_proj.lora_A.weight mean=-1.5921e-05 max=2.7537e-02 min=-2.6917e-02
  504. base_model.model.model.layers.5.self_attn.v_proj.lora_B.weight mean=2.1718e-05 max=1.0531e-02 min=-1.2215e-02
  505. base_model.model.model.layers.6.mlp.down_proj.lora_A.weight mean=3.4664e-06 max=2.4355e-02 min=-2.6658e-02
  506. base_model.model.model.layers.6.mlp.down_proj.lora_B.weight mean=-5.9417e-06 max=1.0959e-02 min=-1.1467e-02
  507. base_model.model.model.layers.6.mlp.gate_proj.lora_A.weight mean=7.8124e-05 max=2.8245e-02 min=-2.8144e-02
  508. base_model.model.model.layers.6.mlp.gate_proj.lora_B.weight mean=-2.6520e-06 max=1.6564e-02 min=-1.8147e-02
  509. base_model.model.model.layers.6.mlp.up_proj.lora_A.weight mean=4.0800e-06 max=3.0378e-02 min=-2.8488e-02
  510. base_model.model.model.layers.6.mlp.up_proj.lora_B.weight mean=2.9213e-06 max=1.5779e-02 min=-1.6581e-02
  511. base_model.model.model.layers.6.self_attn.k_proj.lora_A.weight mean=-2.3656e-05 max=3.0932e-02 min=-3.2340e-02
  512. base_model.model.model.layers.6.self_attn.k_proj.lora_B.weight mean=3.4880e-05 max=2.1441e-02 min=-2.2410e-02
  513. base_model.model.model.layers.6.self_attn.o_proj.lora_A.weight mean=-3.1704e-05 max=2.8427e-02 min=-2.9367e-02
  514. base_model.model.model.layers.6.self_attn.o_proj.lora_B.weight mean=2.5253e-06 max=1.1311e-02 min=-1.0766e-02
  515. base_model.model.model.layers.6.self_attn.q_proj.lora_A.weight mean=2.7226e-05 max=3.2661e-02 min=-3.4581e-02
  516. base_model.model.model.layers.6.self_attn.q_proj.lora_B.weight mean=-6.1819e-06 max=2.3131e-02 min=-2.2448e-02
  517. base_model.model.model.layers.6.self_attn.v_proj.lora_A.weight mean=-3.6994e-05 max=2.9275e-02 min=-2.7696e-02
  518. base_model.model.model.layers.6.self_attn.v_proj.lora_B.weight mean=-1.2903e-05 max=1.3116e-02 min=-9.5764e-03
  519. base_model.model.model.layers.7.mlp.down_proj.lora_A.weight mean=-5.7868e-06 max=2.4457e-02 min=-2.5638e-02
  520. base_model.model.model.layers.7.mlp.down_proj.lora_B.weight mean=-6.8103e-06 max=1.1349e-02 min=-1.1261e-02
  521. base_model.model.model.layers.7.mlp.gate_proj.lora_A.weight mean=-2.5315e-05 max=2.9935e-02 min=-2.9870e-02
  522. base_model.model.model.layers.7.mlp.gate_proj.lora_B.weight mean=5.0056e-07 max=1.8724e-02 min=-1.8415e-02
  523. base_model.model.model.layers.7.mlp.up_proj.lora_A.weight mean=4.9446e-05 max=2.8535e-02 min=-2.7389e-02
  524. base_model.model.model.layers.7.mlp.up_proj.lora_B.weight mean=2.1685e-06 max=1.5725e-02 min=-1.5090e-02
  525. base_model.model.model.layers.7.self_attn.k_proj.lora_A.weight mean=5.9669e-05 max=3.6676e-02 min=-3.5363e-02
  526. base_model.model.model.layers.7.self_attn.k_proj.lora_B.weight mean=1.4975e-05 max=1.9599e-02 min=-1.7959e-02
  527. base_model.model.model.layers.7.self_attn.o_proj.lora_A.weight mean=-8.7379e-05 max=2.7507e-02 min=-2.9342e-02
  528. base_model.model.model.layers.7.self_attn.o_proj.lora_B.weight mean=5.1865e-06 max=1.2849e-02 min=-1.3752e-02
  529. base_model.model.model.layers.7.self_attn.q_proj.lora_A.weight mean=1.1773e-05 max=3.3752e-02 min=-3.3373e-02
  530. base_model.model.model.layers.7.self_attn.q_proj.lora_B.weight mean=-2.7465e-05 max=2.0810e-02 min=-1.9816e-02
  531. base_model.model.model.layers.7.self_attn.v_proj.lora_A.weight mean=-1.1994e-05 max=2.8070e-02 min=-2.9949e-02
  532. base_model.model.model.layers.7.self_attn.v_proj.lora_B.weight mean=1.0071e-06 max=9.6003e-03 min=-9.6160e-03
  533. base_model.model.model.layers.8.mlp.down_proj.lora_A.weight mean=9.4748e-06 max=2.4596e-02 min=-2.2908e-02
  534. base_model.model.model.layers.8.mlp.down_proj.lora_B.weight mean=1.2032e-05 max=1.0274e-02 min=-9.5460e-03
  535. base_model.model.model.layers.8.mlp.gate_proj.lora_A.weight mean=5.7291e-07 max=2.8332e-02 min=-3.1724e-02
  536. base_model.model.model.layers.8.mlp.gate_proj.lora_B.weight mean=1.4605e-05 max=1.9089e-02 min=-1.6849e-02
  537. base_model.model.model.layers.8.mlp.up_proj.lora_A.weight mean=1.0355e-06 max=2.7437e-02 min=-2.6610e-02
  538. base_model.model.model.layers.8.mlp.up_proj.lora_B.weight mean=1.0227e-05 max=1.4801e-02 min=-1.9308e-02
  539. base_model.model.model.layers.8.self_attn.k_proj.lora_A.weight mean=-7.8529e-06 max=3.2014e-02 min=-3.6612e-02
  540. base_model.model.model.layers.8.self_attn.k_proj.lora_B.weight mean=7.1046e-05 max=2.0010e-02 min=-2.0040e-02
  541. base_model.model.model.layers.8.self_attn.o_proj.lora_A.weight mean=-4.4690e-05 max=2.6557e-02 min=-2.8575e-02
  542. base_model.model.model.layers.8.self_attn.o_proj.lora_B.weight mean=1.3273e-05 max=1.0980e-02 min=-1.1736e-02
  543. base_model.model.model.layers.8.self_attn.q_proj.lora_A.weight mean=-2.6461e-05 max=3.1957e-02 min=-3.2380e-02
  544. base_model.model.model.layers.8.self_attn.q_proj.lora_B.weight mean=5.6262e-05 max=2.0821e-02 min=-1.9729e-02
  545. base_model.model.model.layers.8.self_attn.v_proj.lora_A.weight mean=6.4409e-05 max=2.9111e-02 min=-2.9783e-02
  546. base_model.model.model.layers.8.self_attn.v_proj.lora_B.weight mean=-1.4621e-05 max=9.9506e-03 min=-1.0441e-02
  547. base_model.model.model.layers.9.mlp.down_proj.lora_A.weight mean=8.5221e-06 max=2.5508e-02 min=-2.7253e-02
  548. base_model.model.model.layers.9.mlp.down_proj.lora_B.weight mean=7.4185e-06 max=1.6637e-02 min=-1.5690e-02
  549. base_model.model.model.layers.9.mlp.gate_proj.lora_A.weight mean=-1.7186e-05 max=2.8875e-02 min=-3.0032e-02
  550. base_model.model.model.layers.9.mlp.gate_proj.lora_B.weight mean=3.4325e-06 max=1.9275e-02 min=-1.8203e-02
  551. base_model.model.model.layers.9.mlp.up_proj.lora_A.weight mean=4.9187e-05 max=2.8604e-02 min=-2.7848e-02
  552. base_model.model.model.layers.9.mlp.up_proj.lora_B.weight mean=-4.6777e-07 max=1.5985e-02 min=-1.4567e-02
  553. base_model.model.model.layers.9.self_attn.k_proj.lora_A.weight mean=-1.4755e-05 max=3.2634e-02 min=-3.3157e-02
  554. base_model.model.model.layers.9.self_attn.k_proj.lora_B.weight mean=-2.0614e-05 max=1.8564e-02 min=-2.0937e-02
  555. base_model.model.model.layers.9.self_attn.o_proj.lora_A.weight mean=-1.5071e-05 max=2.8093e-02 min=-2.7048e-02
  556. base_model.model.model.layers.9.self_attn.o_proj.lora_B.weight mean=-5.0861e-08 max=1.2984e-02 min=-1.3392e-02
  557. base_model.model.model.layers.9.self_attn.q_proj.lora_A.weight mean=2.9296e-05 max=3.0509e-02 min=-3.2919e-02
  558. base_model.model.model.layers.9.self_attn.q_proj.lora_B.weight mean=-1.9228e-05 max=1.7552e-02 min=-1.8593e-02
  559. base_model.model.model.layers.9.self_attn.v_proj.lora_A.weight mean=5.8312e-05 max=3.0908e-02 min=-3.0967e-02
  560. base_model.model.model.layers.9.self_attn.v_proj.lora_B.weight mean=-2.3368e-06 max=1.1700e-02 min=-1.1912e-02
Advertisement
Add Comment
Please, Sign In to add comment