Guest User

Basic-math-formulas.md

a guest
May 24th, 2025
93
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.17 KB | Source Code | 0 0
  1. ## Exponent rules
  2.  
  3. $$
  4. \begin{array}{ll}
  5. a^m a^n = a^{m + n} \\
  6. \\
  7. (a^m)^n = a^{mn} \\
  8. \\
  9. (ab)^n = a^n b^n
  10. \end{array}
  11. $$
  12.  
  13. ## Logarithm rules
  14.  
  15. $$
  16. \begin{array}{ll}
  17. \log_b (xy) = \log_b x + \log_b y \\
  18. \\
  19. \log_b (x^k) = k \log_b x \\
  20. \\
  21. \log_b x = \dfrac{\log_c x}{\log_c b}
  22. \end{array}
  23. $$
  24.  
  25. ## Proofs
  26.  
  27. ### Exponent rules
  28.  
  29. Let $a$ and $b$ be real numbers, and let $m$ and $n$ be positive integers.
  30.  
  31. **Definition (_Exponentiation_)**:
  32.  
  33. $$
  34. \begin{array}{lll}
  35. a^1 = a, & & \text{(Def. 1)} \\
  36. a^{n + 1} = a^n a & \text{for } n \ge 1. & \text{(Def. 2)}
  37. \end{array}
  38. $$
  39.  
  40. By induction on $n$:
  41.  
  42. (1) $a^m a^n = a^{m + n}$
  43.  
  44. Base case ($n = 1$):
  45.  
  46. $$
  47. \begin{align*}
  48. a^m a^1 & = a^m a & & \text{(by Def. 1)} \\
  49. & = a^{m + 1}. & & \text{(by Def. 2)}
  50. \end{align*}
  51. $$
  52.  
  53. Inductive step: Assume $a^m a^n = a^{m + n}$. Then:
  54.  
  55. $$
  56. \begin{align*}
  57. a^m a^{n + 1} & = a^m (a^n a) & & \text{(by Def. 2)} \\
  58. & = (a^m a^n) a & & \text{(by associativity)} \\
  59. & = a^{m + n} a & & \text{(by the induction hypothesis)} \\
  60. & = a^{(m + n) + 1} & & \text{(by Def. 2)} \\
  61. & = a^{m + (n + 1)}. & & \text{(by associativity)}
  62. \end{align*}
  63. $$
  64.  
  65. (2) $(a^m)^n = a^{mn}$
  66.  
  67. Base case ($n = 1$):
  68.  
  69. $$
  70. \begin{align*}
  71. (a^m)^1 & = a^m & & \text{(by Def. 1)} \\
  72. & = a^{m \cdot 1}. & & \text{(by identity)}
  73. \end{align*}
  74. $$
  75.  
  76. Inductive step: Assume $(a^m)^n = a^{mn}$. Then:
  77.  
  78. $$
  79. \begin{align*}
  80. (a^m)^{n + 1} & = (a^m)^n a^m & & \text{(by Def. 2)} \\
  81. & = a^{mn} a^m & & \text{(by the induction hypothesis)} \\
  82. & = a^{mn + m} & & \text{(by Rule 1)} \\
  83. & = a^{m(n + 1)}. & & \text{(by distributivity)}
  84. \end{align*}
  85. $$
  86.  
  87. (3) $(ab)^n = a^n b^n$
  88.  
  89. Base case ($n = 1$):
  90.  
  91. $$
  92. \begin{align*}
  93. (ab)^1 & = ab & & \text{(by Def. 1)} \\
  94. & = a^1 b^1. & & \text{(by Def. 1)}
  95. \end{align*}
  96. $$
  97.  
  98. Inductive step: Assume $(ab)^n = a^n b^n$. Then:
  99.  
  100. $$
  101. \begin{align*}
  102. (ab)^{n + 1} & = (ab)^n (ab) & & \text{(by Def. 2)} \\
  103. & = a^n b^n (ab) & & \text{(by the induction hypothesis)} \\
  104. & = (a^n a) (b^n b) & & \text{(by associativity and commutativity)} \\
  105. & = a^{n + 1} b^{n + 1}. & & \text{(by Def. 2)}
  106. \end{align*}
  107. $$
  108.  
  109. ### Logarithm rules
  110.  
  111. Let $x, y > 0$ and $k$ be real numbers, and let $b, c > 0$ be real numbers with $b, c \ne 1$. Since a logarithm is the inverse of exponentiation, we have:
  112.  
  113. $$b^{\log_b x} = \log_b (b^x) = x,$$
  114.  
  115. just like $f(f^{-1}(x)) = f^{-1}(f(x)) = x$. Using this:
  116.  
  117. (1)
  118.  
  119. $$
  120. \begin{align*}
  121. \log_b (xy) & = \log_b (b^{\log_b x} b^{\log_b y}) \\
  122. & = \log_b (b^{\log_b x + \log_b y}) \\
  123. & = \log_b x + \log_b y.
  124. \end{align*}
  125. $$
  126.  
  127. (2)
  128.  
  129. $$
  130. \begin{align*}
  131. \log_b (x^k) & = \log_b ((b^{\log_b x})^k) \\
  132. & = \log_b (b^{k \log_b x}) \\
  133. & = k \log_b x.
  134. \end{align*}
  135. $$
  136.  
  137. (3)
  138.  
  139. $$
  140. \begin{align*}
  141. \log_b x & = \log_b x \cdot \frac{\log_c b}{\log_c b} \\
  142. & = \frac{\log_c (b^{\log_b x})}{\log_c b} \\
  143. & = \frac{\log_c x}{\log_c b}.
  144. \end{align*}
  145. $$
  146.  
Add Comment
Please, Sign In to add comment