Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ## Exponent rules
- $$
- \begin{array}{ll}
- a^m a^n = a^{m + n} \\
- \\
- (a^m)^n = a^{mn} \\
- \\
- (ab)^n = a^n b^n
- \end{array}
- $$
- ## Logarithm rules
- $$
- \begin{array}{ll}
- \log_b (xy) = \log_b x + \log_b y \\
- \\
- \log_b (x^k) = k \log_b x \\
- \\
- \log_b x = \dfrac{\log_c x}{\log_c b}
- \end{array}
- $$
- ## Proofs
- ### Exponent rules
- Let $a$ and $b$ be real numbers, and let $m$ and $n$ be positive integers.
- **Definition (_Exponentiation_)**:
- $$
- \begin{array}{lll}
- a^1 = a, & & \text{(Def. 1)} \\
- a^{n + 1} = a^n a & \text{for } n \ge 1. & \text{(Def. 2)}
- \end{array}
- $$
- By induction on $n$:
- (1) $a^m a^n = a^{m + n}$
- Base case ($n = 1$):
- $$
- \begin{align*}
- a^m a^1 & = a^m a & & \text{(by Def. 1)} \\
- & = a^{m + 1}. & & \text{(by Def. 2)}
- \end{align*}
- $$
- Inductive step: Assume $a^m a^n = a^{m + n}$. Then:
- $$
- \begin{align*}
- a^m a^{n + 1} & = a^m (a^n a) & & \text{(by Def. 2)} \\
- & = (a^m a^n) a & & \text{(by associativity)} \\
- & = a^{m + n} a & & \text{(by the induction hypothesis)} \\
- & = a^{(m + n) + 1} & & \text{(by Def. 2)} \\
- & = a^{m + (n + 1)}. & & \text{(by associativity)}
- \end{align*}
- $$
- (2) $(a^m)^n = a^{mn}$
- Base case ($n = 1$):
- $$
- \begin{align*}
- (a^m)^1 & = a^m & & \text{(by Def. 1)} \\
- & = a^{m \cdot 1}. & & \text{(by identity)}
- \end{align*}
- $$
- Inductive step: Assume $(a^m)^n = a^{mn}$. Then:
- $$
- \begin{align*}
- (a^m)^{n + 1} & = (a^m)^n a^m & & \text{(by Def. 2)} \\
- & = a^{mn} a^m & & \text{(by the induction hypothesis)} \\
- & = a^{mn + m} & & \text{(by Rule 1)} \\
- & = a^{m(n + 1)}. & & \text{(by distributivity)}
- \end{align*}
- $$
- (3) $(ab)^n = a^n b^n$
- Base case ($n = 1$):
- $$
- \begin{align*}
- (ab)^1 & = ab & & \text{(by Def. 1)} \\
- & = a^1 b^1. & & \text{(by Def. 1)}
- \end{align*}
- $$
- Inductive step: Assume $(ab)^n = a^n b^n$. Then:
- $$
- \begin{align*}
- (ab)^{n + 1} & = (ab)^n (ab) & & \text{(by Def. 2)} \\
- & = a^n b^n (ab) & & \text{(by the induction hypothesis)} \\
- & = (a^n a) (b^n b) & & \text{(by associativity and commutativity)} \\
- & = a^{n + 1} b^{n + 1}. & & \text{(by Def. 2)}
- \end{align*}
- $$
- ### Logarithm rules
- Let $x, y > 0$ and $k$ be real numbers, and let $b, c > 0$ be real numbers with $b, c \ne 1$. Since a logarithm is the inverse of exponentiation, we have:
- $$b^{\log_b x} = \log_b (b^x) = x,$$
- just like $f(f^{-1}(x)) = f^{-1}(f(x)) = x$. Using this:
- (1)
- $$
- \begin{align*}
- \log_b (xy) & = \log_b (b^{\log_b x} b^{\log_b y}) \\
- & = \log_b (b^{\log_b x + \log_b y}) \\
- & = \log_b x + \log_b y.
- \end{align*}
- $$
- (2)
- $$
- \begin{align*}
- \log_b (x^k) & = \log_b ((b^{\log_b x})^k) \\
- & = \log_b (b^{k \log_b x}) \\
- & = k \log_b x.
- \end{align*}
- $$
- (3)
- $$
- \begin{align*}
- \log_b x & = \log_b x \cdot \frac{\log_c b}{\log_c b} \\
- & = \frac{\log_c (b^{\log_b x})}{\log_c b} \\
- & = \frac{\log_c x}{\log_c b}.
- \end{align*}
- $$
Add Comment
Please, Sign In to add comment