Advertisement
Guest User

Untitled

a guest
Nov 24th, 2017
202
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 5.46 KB | None | 0 0
  1. Theorem “Subset” “Inclusion”: S ⊆ T ≡ (∀ x • x ∈ S ⇒ x ∈ T)
  2. Proof:
  3. S ⊆ T
  4. ≡⟨ “Subset” ⟩
  5. (∀ x ❙ x ∈ S • x ∈ T)
  6. ≡⟨ “Trading for ∀” ⟩
  7. (∀ x • x ∈ S ⇒ x ∈ T)
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15. Theorem “Inclusion in empty set”: S ⊆ {} ≡ S = {}
  16. Proof:
  17. S ⊆ {} ≡ S = {}
  18. ≡⟨ “Subset” and “Set Equality” ⟩
  19. (∀ e ❙ e ∈ S • e ∈ {}) ≡ (∀ e • e ∈ S ≡ e ∈ {})
  20. ≡⟨ “Empty set” ⟩
  21. (∀ e ❙ e ∈ S • false) ≡ (∀ e • e ∈ S ≡ false)
  22. ≡⟨ “Trading for ∀” ⟩
  23. (∀ e • e ∈ S ∧ false ≡ e ∈ S) ≡ (∀ e • e ∈ S ≡ false)
  24. ≡⟨ “Zero of ∧” ⟩
  25. (∀ e • false ≡ e ∈ S) ≡ (∀ e • e ∈ S ≡ false)
  26. ≡⟨ “Reflexivity of ≡” ⟩
  27. true
  28.  
  29.  
  30.  
  31.  
  32.  
  33.  
  34.  
  35.  
  36. Theorem “Inclusion of universe”: 𝐔 ⊆ S ≡ 𝐔 = S
  37. Proof:
  38. 𝐔 ⊆ S ≡ 𝐔 = S
  39. ≡⟨ “Subset” and “Set Equality” ⟩
  40. (∀ e ❙ e ∈ 𝐔 • e ∈ S) ≡ (∀ e • e ∈ 𝐔 ≡ e ∈ S)
  41. ≡⟨ “Universal set” ⟩
  42. (∀ e ❙ true • e ∈ S) ≡ (∀ e • true ≡ e ∈ S)
  43. ≡⟨ “Trading for ∀” ⟩
  44. (∀ e • true ∧ e ∈ S ≡ true) ≡ (∀ e • true ≡ e ∈ S)
  45. ≡⟨ “Identity of ∧” and “Identity of ≡” ⟩
  46. (∀ e • e ∈ S) ≡ (∀ e • e ∈ S)
  47. ≡⟨ “Reflexivity of ≡” ⟩
  48. true
  49.  
  50.  
  51.  
  52.  
  53.  
  54.  
  55.  
  56.  
  57. Theorem “Characterisation of set difference”: A - B ⊆ S ≡ A ⊆ S ∪ B
  58. Proof:
  59. A - B ⊆ S
  60. ≡⟨ “Subset” ⟩
  61. (∀ e ❙ e ∈ (A - B) • e ∈ S)
  62. ≡⟨ “Set difference” ⟩
  63. (∀ e ❙ e ∈ A ∧ ¬ (e ∈ B) • e ∈ S)
  64. ≡⟨ “Trading” ⟩
  65. (∀ e ❙ e ∈ A • ¬ ¬ (e ∈ B) ∨ e ∈ S)
  66. ≡⟨ “Double negation” ⟩
  67. (∀ e ❙ e ∈ A • (e ∈ B) ∨ e ∈ S)
  68. ≡⟨ “Union” ⟩
  69. (∀ e ❙ e ∈ A • e ∈ (B ∪ S))
  70. ≡⟨ “Subset” ⟩
  71. A ⊆ S ∪ B
  72.  
  73.  
  74.  
  75.  
  76.  
  77.  
  78.  
  79.  
  80. Theorem “Indirect set equality from below”:
  81. A = B ≡ (∀ S : set X • S ⊆ A ≡ S ⊆ B)
  82. Proof:
  83. Using “Mutual implication”:
  84. Subproof for `A = B ⇒ (∀ S : set X • S ⊆ A ≡ S ⊆ B)`:
  85. Assuming `A = B`:
  86. For any `S`:
  87. S ⊆ A ≡ S ⊆ B
  88. ≡⟨ Assumption `A = B` ⟩
  89. S ⊆ B ≡ S ⊆ B
  90. ≡⟨ “Reflexivity of ≡” ⟩
  91. true
  92. Subproof for `(∀ S : set X • S ⊆ A ≡ S ⊆ B) ⇒ A = B`:
  93. Assuming `(∀ S : set X • S ⊆ A ≡ S ⊆ B)`:
  94. true
  95. ≡⟨ “Antisymmetry of ⊆” ⟩
  96. B ⊆ A ⇒ A ⊆ B ⇒ A = B
  97. ≡⟨ substitution and Assumption `(∀ S : set X • S ⊆ A ≡ S ⊆ B)` ⟩
  98. B ⊆ B ⇒ A ⊆ A ⇒ A = B
  99. ≡⟨ “Reflexivity of ⊆” and “Left-identity of ⇒” ⟩
  100. A = B
  101.  
  102.  
  103.  
  104.  
  105.  
  106.  
  107.  
  108. Theorem “Indirect set equality from above”:
  109. A = B ≡ (∀ S : set X • A ⊆ S ≡ B ⊆ S)
  110. Proof:
  111. Using “Mutual implication”:
  112. Subproof for `A = B ⇒ (∀ S : set X • A ⊆ S ≡ B ⊆ S)`:
  113. Assuming `A = B`:
  114. For any `S`:
  115. A ⊆ S ≡ B ⊆ S
  116. ≡⟨ Assumption `A = B` ⟩
  117. B ⊆ S ≡ B ⊆ S
  118. ≡⟨ “Reflexivity of ≡” ⟩
  119. true
  120. Subproof for `(∀ S : set X • A ⊆ S ≡ B ⊆ S) ⇒ A = B`:
  121. Assuming `(∀ S : set X • A ⊆ S ≡ B ⊆ S)`:
  122. true
  123. ≡⟨ “Antisymmetry of ⊆” ⟩
  124. B ⊆ A ⇒ A ⊆ B ⇒ A = B
  125. ≡⟨ Assumption `(∀ S : set X • A ⊆ S ≡ B ⊆ S)` and substitution ⟩
  126. A ⊆ A ⇒ B ⊆ B ⇒ A = B
  127. ≡⟨ “Reflexivity of ⊆” and “Left-identity of ⇒” ⟩
  128. A = B
  129.  
  130.  
  131.  
  132.  
  133.  
  134.  
  135.  
  136.  
  137. Theorem “Complement as set difference”: ~ A = 𝐔 - A
  138. Proof:
  139. Using “Set Equality”:
  140. Subproof for `∀ e • e ∈ ~ A ≡ e ∈ (𝐔 - A)`:
  141. For any `e`:
  142. e ∈ ~ A ≡ e ∈ (𝐔 - A)
  143. ≡⟨ “Set difference” ⟩
  144. e ∈ ~ A ≡ e ∈ 𝐔 ∧ ¬ (e ∈ A)
  145. ≡⟨ “Complement” ⟩
  146. e ∈ ~ A ≡ e ∈ 𝐔 ∧ (e ∈ ~ A)
  147. ≡⟨ “Universal set” and “Identity of ∧” ⟩
  148. e ∈ ~ A ≡ (e ∈ ~ A)
  149. ≡⟨ “Reflexivity of ≡” ⟩
  150. true
  151.  
  152.  
  153.  
  154.  
  155.  
  156.  
  157. Theorem “Complement as pseudocomplement”: ~ A = A ➩ {}
  158. Proof:
  159. Using “Set Equality”:
  160. Subproof for `∀ e • e ∈ ~ A ≡ e ∈ (A ➩ {})`:
  161. For any `e`:
  162. e ∈ (A ➩ {})
  163. ≡⟨ “Membership in ➩” ⟩
  164. e ∈ A ⇒ e ∈ {}
  165. ≡⟨ “Empty set” ⟩
  166. e ∈ A ⇒ false
  167. ≡⟨ (3.74) ⟩
  168. ¬ (e ∈ A)
  169. ≡⟨ “Complement” ⟩
  170. e ∈ ~ A
  171.  
  172.  
  173.  
  174.  
  175.  
  176.  
  177.  
  178. Theorem “Antitonicity of ➩”: A ⊆ B ⇒ B ➩ C ⊆ A ➩ C
  179. Proof:
  180. Assuming `A ⊆ B`:
  181. Using “Inclusion”:
  182. Subproof for `∀ e ❙ e ∈ (B ➩ C) • e ∈ (A ➩ C)`:
  183. For any `e` satisfying `e ∈ (B ➩ C)`:
  184. true
  185. ≡⟨ Assumption `e ∈ (B ➩ C)` ⟩
  186. e ∈ (B ➩ C)
  187. ≡⟨ “Membership in ➩” ⟩
  188. e ∈ B ⇒ e ∈ C
  189. ⇒⟨ “Antitonicity of ⇒” with “Casting” with Assumption `A ⊆ B` ⟩
  190. e ∈ A ⇒ e ∈ C
  191. ≡⟨ “Membership in ➩” ⟩
  192. e ∈ (A ➩ C)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement