Guest User

Simplex.LUA

a guest
Feb 16th, 2023
177
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 18.58 KB | Source Code | 0 0
  1. -----------------------------------------------
  2. ---Simplex Noise
  3. -- Original Java Source: http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  4. -- Original Author: https://raw.githubusercontent.com/weswigham/simplex/master/lua/src/simplex.lua
  5. -- (most) Original comments included
  6. -----------------------------------------------
  7.  
  8. AddCSLuaFile()
  9.  
  10. local math = math
  11. local table = table
  12. local tonumber = tonumber
  13. local ipairs = ipairs
  14. local error = error
  15.  
  16. local simplex = {}
  17.  
  18. simplex.DIR_X = 0
  19. simplex.DIR_Y = 1
  20. simplex.DIR_Z = 2
  21. simplex.DIR_W = 3
  22. simplex.internalCache = false
  23.  
  24.  
  25. local Gradients3D = {{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
  26. {1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
  27. {0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};
  28. local Gradients4D = {{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1},
  29. {0,-1,1,1}, {0,-1,1,-1}, {0,-1,-1,1}, {0,-1,-1,-1},
  30. {1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1},
  31. {-1,0,1,1}, {-1,0,1,-1}, {-1,0,-1,1}, {-1,0,-1,-1},
  32. {1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1},
  33. {-1,1,0,1}, {-1,1,0,-1}, {-1,-1,0,1}, {-1,-1,0,-1},
  34. {1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0},
  35. {-1,1,1,0}, {-1,1,-1,0}, {-1,-1,1,0}, {-1,-1,-1,0}};
  36. local p = {151,160,137,91,90,15,
  37. 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
  38. 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
  39. 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
  40. 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
  41. 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
  42. 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
  43. 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
  44. 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
  45. 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
  46. 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
  47. 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
  48. 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
  49.  
  50. -- To remove the need for index wrapping, double the permutation table length
  51.  
  52. for i=1,#p do
  53. p[i-1] = p[i]
  54. p[i] = nil
  55. end
  56.  
  57. for i=1,#Gradients3D do
  58. Gradients3D[i-1] = Gradients3D[i]
  59. Gradients3D[i] = nil
  60. end
  61.  
  62. for i=1,#Gradients4D do
  63. Gradients4D[i-1] = Gradients4D[i]
  64. Gradients4D[i] = nil
  65. end
  66.  
  67. local perm = {}
  68.  
  69. for i=0,255 do
  70. perm[i] = p[i]
  71. perm[i+256] = p[i]
  72. end
  73.  
  74. -- A lookup table to traverse the sim around a given point in 4D.
  75. -- Details can be found where this table is used, in the 4D noise method.
  76.  
  77. local sim = {
  78. {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
  79. {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
  80. {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
  81. {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
  82. {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
  83. {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
  84. {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
  85. {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
  86.  
  87. local function Dot2D(tbl, x, y)
  88. return tbl[1]*x + tbl[2]*y;
  89. end
  90.  
  91. local function Dot3D(tbl, x, y, z)
  92. return tbl[1]*x + tbl[2]*y + tbl[3]*z
  93. end
  94.  
  95. local function Dot4D( tbl, x,y,z,w)
  96. return tbl[1]*x + tbl[2]*y + tbl[3]*z + tbl[3]*w;
  97. end
  98.  
  99. local Prev2D = {}
  100.  
  101.  
  102. -- 2D simplex noise
  103.  
  104. function simplex.Noise2D(xin, yin)
  105. if simplex.internalCache and Prev2D[xin] and Prev2D[xin][yin] then return Prev2D[xin][yin] end
  106.  
  107. local n0, n1, n2; -- Noise contributions from the three corners
  108. -- Skew the input space to determine which simplex cell we're in
  109. local F2 = 0.5*(math.sqrt(3.0)-1.0);
  110. local s = (xin+yin)*F2; -- Hairy factor for 2D
  111. local i = math.floor(xin+s);
  112. local j = math.floor(yin+s);
  113. local G2 = (3.0-math.sqrt(3.0))/6.0;
  114.  
  115. local t = (i+j)*G2;
  116. local X0 = i-t; -- Unskew the cell origin back to (x,y) space
  117. local Y0 = j-t;
  118. local x0 = xin-X0; -- The x,y distances from the cell origin
  119. local y0 = yin-Y0;
  120.  
  121. -- For the 2D case, the simplex shape is an equilateral triangle.
  122. -- Determine which simplex we are in.
  123. local i1, j1; -- Offsets for second (middle) corner of simplex in (i,j) coords
  124. if(x0>y0) then
  125. i1=1
  126. j1=0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1)
  127. else
  128. i1=0
  129. j1=1 -- upper triangle, YX order: (0,0)->(0,1)->(1,1)
  130. end
  131.  
  132. -- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  133. -- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  134. -- c = (3-sqrt(3))/6
  135.  
  136. local x1 = x0 - i1 + G2; -- Offsets for middle corner in (x,y) unskewed coords
  137. local y1 = y0 - j1 + G2;
  138. local x2 = x0 - 1.0 + 2.0 * G2; -- Offsets for last corner in (x,y) unskewed coords
  139. local y2 = y0 - 1.0 + 2.0 * G2;
  140.  
  141. -- Work out the hashed gradient indices of the three simplex corners
  142. local ii = bit.band(i , 255)
  143. local jj = bit.band(j , 255)
  144. local gi0 = perm[ii+perm[jj]] % 12;
  145. local gi1 = perm[ii+i1+perm[jj+j1]] % 12;
  146. local gi2 = perm[ii+1+perm[jj+1]] % 12;
  147.  
  148. -- Calculate the contribution from the three corners
  149. local t0 = 0.5 - x0*x0-y0*y0;
  150. if t0<0 then
  151. n0 = 0.0;
  152. else
  153. t0 = t0 * t0
  154. n0 = t0 * t0 * Dot2D(Gradients3D[gi0], x0, y0); -- (x,y) of Gradients3D used for 2D gradient
  155. end
  156.  
  157. local t1 = 0.5 - x1*x1-y1*y1;
  158. if (t1<0) then
  159. n1 = 0.0;
  160. else
  161. t1 = t1*t1
  162. n1 = t1 * t1 * Dot2D(Gradients3D[gi1], x1, y1);
  163. end
  164.  
  165. local t2 = 0.5 - x2*x2-y2*y2;
  166. if (t2<0) then
  167. n2 = 0.0;
  168. else
  169. t2 = t2*t2
  170. n2 = t2 * t2 * Dot2D(Gradients3D[gi2], x2, y2);
  171. end
  172.  
  173.  
  174. -- Add contributions from each corner to get the final noise value.
  175. -- The result is scaled to return values in the localerval [-1,1].
  176.  
  177. local retval = 70.0 * (n0 + n1 + n2)
  178.  
  179. if simplex.internalCache then
  180. if not Prev2D[xin] then Prev2D[xin] = {} end
  181. Prev2D[xin][yin] = retval
  182. end
  183.  
  184. return retval;
  185. end
  186.  
  187. local Prev3D = {}
  188.  
  189. -- 3D simplex noise
  190. function simplex.Noise3D(xin, yin, zin)
  191.  
  192. if simplex.internalCache and Prev3D[xin] and Prev3D[xin][yin] and Prev3D[xin][yin][zin] then return Prev3D[xin][yin][zin] end
  193.  
  194. local n0, n1, n2, n3; -- Noise contributions from the four corners
  195.  
  196. -- Skew the input space to determine which simplex cell we're in
  197. local F3 = 1.0/3.0;
  198. local s = (xin+yin+zin)*F3; -- Very nice and simple skew factor for 3D
  199. local i = math.floor(xin+s);
  200. local j = math.floor(yin+s);
  201. local k = math.floor(zin+s);
  202.  
  203. local G3 = 1.0/6.0; -- Very nice and simple unskew factor, too
  204. local t = (i+j+k)*G3;
  205.  
  206. local X0 = i-t; -- Unskew the cell origin back to (x,y,z) space
  207. local Y0 = j-t;
  208. local Z0 = k-t;
  209.  
  210. local x0 = xin-X0; -- The x,y,z distances from the cell origin
  211. local y0 = yin-Y0;
  212. local z0 = zin-Z0;
  213.  
  214. -- For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  215. -- Determine which simplex we are in.
  216. local i1, j1, k1; -- Offsets for second corner of simplex in (i,j,k) coords
  217. local i2, j2, k2; -- Offsets for third corner of simplex in (i,j,k) coords
  218.  
  219. if (x0>=y0) then
  220. if (y0>=z0) then
  221. i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; -- X Y Z order
  222. elseif (x0>=z0) then
  223. i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; -- X Z Y order
  224. else
  225. i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; -- Z X Y order
  226. end
  227. else -- x0<y0
  228. if (y0<z0) then
  229. i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; -- Z Y X order
  230. elseif (x0<z0) then
  231. i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; -- Y Z X order
  232. else
  233. i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; -- Y X Z order
  234. end
  235. end
  236.  
  237. -- A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  238. -- a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  239. -- a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  240. -- c = 1/6.
  241.  
  242. local x1 = x0 - i1 + G3; -- Offsets for second corner in (x,y,z) coords
  243. local y1 = y0 - j1 + G3;
  244. local z1 = z0 - k1 + G3;
  245.  
  246. local x2 = x0 - i2 + 2.0*G3; -- Offsets for third corner in (x,y,z) coords
  247. local y2 = y0 - j2 + 2.0*G3;
  248. local z2 = z0 - k2 + 2.0*G3;
  249.  
  250. local x3 = x0 - 1.0 + 3.0*G3; -- Offsets for last corner in (x,y,z) coords
  251. local y3 = y0 - 1.0 + 3.0*G3;
  252. local z3 = z0 - 1.0 + 3.0*G3;
  253.  
  254. -- Work out the hashed gradient indices of the four simplex corners
  255. local ii = bit.band(i , 255)
  256. local jj = bit.band(j , 255)
  257. local kk = bit.band(k , 255)
  258.  
  259. local gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
  260. local gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
  261. local gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
  262. local gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
  263.  
  264. -- Calculate the contribution from the four corners
  265. local t0 = 0.5 - x0*x0 - y0*y0 - z0*z0;
  266.  
  267. if (t0<0) then
  268. n0 = 0.0;
  269. else
  270. t0 = t0*t0;
  271. n0 = t0 * t0 * Dot3D(Gradients3D[gi0], x0, y0, z0);
  272. end
  273.  
  274. local t1 = 0.5 - x1*x1 - y1*y1 - z1*z1;
  275.  
  276. if (t1<0) then
  277. n1 = 0.0;
  278. else
  279. t1 = t1*t1;
  280. n1 = t1 * t1 * Dot3D(Gradients3D[gi1], x1, y1, z1);
  281. end
  282.  
  283. local t2 = 0.5 - x2*x2 - y2*y2 - z2*z2;
  284.  
  285. if (t2<0) then
  286. n2 = 0.0;
  287. else
  288. t2 = t2*t2;
  289. n2 = t2 * t2 * Dot3D(Gradients3D[gi2], x2, y2, z2);
  290. end
  291.  
  292. local t3 = 0.5 - x3*x3 - y3*y3 - z3*z3;
  293.  
  294. if (t3<0) then
  295. n3 = 0.0;
  296. else
  297. t3 = t3*t3;
  298. n3 = t3 * t3 * Dot3D(Gradients3D[gi3], x3, y3, z3);
  299. end
  300.  
  301.  
  302. -- Add contributions from each corner to get the final noise value.
  303. -- The result is scaled to stay just inside [-1,1]
  304. local retval = 32.0*(n0 + n1 + n2 + n3)
  305.  
  306. if simplex.internalCache then
  307. if not Prev3D[xin] then Prev3D[xin] = {} end
  308. if not Prev3D[xin][yin] then Prev3D[xin][yin] = {} end
  309. Prev3D[xin][yin][zin] = retval
  310. end
  311.  
  312. return retval;
  313. end
  314.  
  315. local Prev4D = {}
  316.  
  317. -- 4D simplex noise
  318. function simplex.Noise4D(x,y,z,w)
  319.  
  320. if simplex.internalCache and Prev4D[x] and Prev4D[x][y] and Prev4D[x][y][z] and Prev4D[x][y][z][w] then return Prev4D[x][y][z][w] end
  321.  
  322. -- The skewing and unskewing factors are hairy again for the 4D case
  323. local F4 = (math.sqrt(5.0)-1.0)/4.0;
  324. local G4 = (5.0-math.sqrt(5.0))/20.0;
  325. local n0, n1, n2, n3, n4; -- Noise contributions from the five corners
  326. -- Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  327. local s = (x + y + z + w) * F4; -- Factor for 4D skewing
  328. local i = math.floor(x + s);
  329. local j = math.floor(y + s);
  330. local k = math.floor(z + s);
  331. local l = math.floor(w + s);
  332. local t = (i + j + k + l) * G4; -- Factor for 4D unskewing
  333. local X0 = i - t; -- Unskew the cell origin back to (x,y,z,w) space
  334. local Y0 = j - t;
  335. local Z0 = k - t;
  336. local W0 = l - t;
  337. local x0 = x - X0; -- The x,y,z,w distances from the cell origin
  338. local y0 = y - Y0;
  339. local z0 = z - Z0;
  340. local w0 = w - W0;
  341. -- For the 4D case, the simplex is a 4D shape I won't even try to describe.
  342. -- To find out which of the 24 possible simplices we're in, we need to
  343. -- determine the magnitude ordering of x0, y0, z0 and w0.
  344. -- The method below is a good way of finding the ordering of x,y,z,w and
  345. -- then find the correct traversal order for the simplex were in.
  346. -- First, six pair-wise comparisons are performed between each possible pair
  347. -- of the four coordinates, and the results are used to add up binary bits
  348. -- for an localeger index.
  349. local c1 = (x0 > y0) and 32 or 1;
  350. local c2 = (x0 > z0) and 16 or 1;
  351. local c3 = (y0 > z0) and 8 or 1;
  352. local c4 = (x0 > w0) and 4 or 1;
  353. local c5 = (y0 > w0) and 2 or 1;
  354. local c6 = (z0 > w0) and 1 or 1;
  355. local c = c1 + c2 + c3 + c4 + c5 + c6;
  356. local i1, j1, k1, l1; -- The localeger offsets for the second simplex corner
  357. local i2, j2, k2, l2; -- The localeger offsets for the third simplex corner
  358. local i3, j3, k3, l3; -- The localeger offsets for the fourth simplex corner
  359.  
  360. -- sim[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  361. -- Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  362. -- impossible. Only the 24 indices which have non-zero entries make any sense.
  363. -- We use a thresholding to set the coordinates in turn from the largest magnitude.
  364. -- The number 3 in the "sim" array is at the position of the largest coordinate.
  365.  
  366. i1 = sim[c][1]>=3 and 1 or 0;
  367. j1 = sim[c][2]>=3 and 1 or 0;
  368. k1 = sim[c][3]>=3 and 1 or 0;
  369. l1 = sim[c][4]>=3 and 1 or 0;
  370. -- The number 2 in the "sim" array is at the second largest coordinate.
  371. i2 = sim[c][1]>=2 and 1 or 0;
  372. j2 = sim[c][2]>=2 and 1 or 0;
  373. k2 = sim[c][3]>=2 and 1 or 0;
  374. l2 = sim[c][4]>=2 and 1 or 0;
  375. -- The number 1 in the "sim" array is at the second smallest coordinate.
  376. i3 = sim[c][1]>=1 and 1 or 0;
  377. j3 = sim[c][2]>=1 and 1 or 0;
  378. k3 = sim[c][3]>=1 and 1 or 0;
  379. l3 = sim[c][4]>=1 and 1 or 0;
  380. -- The fifth corner has all coordinate offsets = 1, so no need to look that up.
  381. local x1 = x0 - i1 + G4; -- Offsets for second corner in (x,y,z,w) coords
  382. local y1 = y0 - j1 + G4;
  383. local z1 = z0 - k1 + G4;
  384. local w1 = w0 - l1 + G4;
  385. local x2 = x0 - i2 + 2.0*G4; -- Offsets for third corner in (x,y,z,w) coords
  386. local y2 = y0 - j2 + 2.0*G4;
  387. local z2 = z0 - k2 + 2.0*G4;
  388. local w2 = w0 - l2 + 2.0*G4;
  389. local x3 = x0 - i3 + 3.0*G4; -- Offsets for fourth corner in (x,y,z,w) coords
  390. local y3 = y0 - j3 + 3.0*G4;
  391. local z3 = z0 - k3 + 3.0*G4;
  392. local w3 = w0 - l3 + 3.0*G4;
  393. local x4 = x0 - 1.0 + 4.0*G4; -- Offsets for last corner in (x,y,z,w) coords
  394. local y4 = y0 - 1.0 + 4.0*G4;
  395. local z4 = z0 - 1.0 + 4.0*G4;
  396. local w4 = w0 - 1.0 + 4.0*G4;
  397.  
  398. -- Work out the hashed gradient indices of the five simplex corners
  399. local ii = bit.band(i , 255)
  400. local jj = bit.band(j , 255)
  401. local kk = bit.band(k , 255)
  402. local ll = bit.band(l , 255)
  403. local gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
  404. local gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
  405. local gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
  406. local gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
  407. local gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
  408.  
  409.  
  410. -- Calculate the contribution from the five corners
  411. local t0 = 0.5 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
  412. if (t0<0) then
  413. n0 = 0.0;
  414. else
  415. t0 = t0*t0;
  416. n0 = t0 * t0 * Dot4D(Gradients4D[gi0], x0, y0, z0, w0);
  417. end
  418.  
  419. local t1 = 0.5 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
  420. if (t1<0) then
  421. n1 = 0.0;
  422. else
  423. t1 = t1*t1;
  424. n1 = t1 * t1 * Dot4D(Gradients4D[gi1], x1, y1, z1, w1);
  425. end
  426.  
  427. local t2 = 0.5 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
  428. if (t2<0) then
  429. n2 = 0.0;
  430. else
  431. t2 = t2*t2;
  432. n2 = t2 * t2 * Dot4D(Gradients4D[gi2], x2, y2, z2, w2);
  433. end
  434.  
  435. local t3 = 0.5 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
  436. if (t3<0) then
  437. n3 = 0.0;
  438. else
  439. t3 = t3*t3;
  440. n3 = t3 * t3 * Dot4D(Gradients4D[gi3], x3, y3, z3, w3);
  441. end
  442.  
  443. local t4 = 0.5 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
  444. if (t4<0) then
  445. n4 = 0.0;
  446. else
  447. t4 = t4*t4;
  448. n4 = t4 * t4 * Dot4D(Gradients4D[gi4], x4, y4, z4, w4);
  449. end
  450.  
  451. -- Sum up and scale the result to cover the range [-1,1]
  452.  
  453. local retval = 27.0 * (n0 + n1 + n2 + n3 + n4)
  454.  
  455. if simplex.internalCache then
  456. if not Prev4D[x] then Prev4D[x] = {} end
  457. if not Prev4D[x][y] then Prev4D[x][y] = {} end
  458. if not Prev4D[x][y][z] then Prev4D[x][y][z] = {} end
  459. Prev4D[x][y][z][w] = retval
  460. end
  461.  
  462. return retval;
  463.  
  464.  
  465. end
  466.  
  467. local e = 2.71828182845904523536
  468.  
  469. local PrevBlur2D = {}
  470.  
  471. function simplex.GBlur2D(x,y,stdDev)
  472. if simplex.internalCache and PrevBlur2D[x] and PrevBlur2D[x][y] and PrevBlur2D[x][y][stdDev] then return PrevBlur2D[x][y][stdDev] end
  473. local pwr = ((x^2+y^2)/(2*(stdDev^2)))*-1
  474. local ret = (1/(2*math.pi*(stdDev^2)))*(e^pwr)
  475.  
  476. if simplex.internalCache then
  477. if not PrevBlur2D[x] then PrevBlur2D[x] = {} end
  478. if not PrevBlur2D[x][y] then PrevBlur2D[x][y] = {} end
  479. PrevBlur2D[x][y][stdDev] = ret
  480. end
  481. return ret
  482. end
  483.  
  484. local PrevBlur1D = {}
  485.  
  486. function simplex.GBlur1D(x,stdDev)
  487. if simplex.internalCache and PrevBlur1D[x] and PrevBlur1D[x][stdDev] then return PrevBlur1D[x][stdDev] end
  488. local pwr = (x^2/(2*stdDev^2))*-1
  489. local ret = (1/(math.sqrt(2*math.pi)*stdDev))*(e^pwr)
  490.  
  491. if simplex.internalCache then
  492. if not PrevBlur1D[x] then PrevBlur1D[x] = {} end
  493. PrevBlur1D[x][stdDev] = ret
  494. end
  495. return ret
  496. end
  497.  
  498. function simplex.FractalSum(func, iter, ...)
  499. local ret = func(...)
  500. for i=1,iter do
  501. local power = 2^iter
  502. local s = power/i
  503.  
  504. local scaled = {}
  505. for elem in ipairs({...}) do
  506. table.insert(scaled, elem*s)
  507. end
  508. ret = ret + (i/power)*(func(unpack(scaled)))
  509. end
  510. return ret
  511. end
  512.  
  513. function simplex.FractalSumAbs(func, iter, ...)
  514. local ret = math.abs(func(...))
  515. for i=1,iter do
  516. local power = 2^iter
  517. local s = power/i
  518.  
  519. local scaled = {}
  520. for elem in ipairs({...}) do
  521. table.insert(scaled, elem*s)
  522. end
  523. ret = ret + (i/power)*(math.abs(func(unpack(scaled))))
  524. end
  525. return ret
  526. end
  527.  
  528. function simplex.Turbulence(func, direction, iter, ...)
  529. local ret = math.abs(func(...))
  530. for i=1,iter do
  531. local power = 2^iter
  532. local s = power/i
  533.  
  534. local scaled = {}
  535. for elem in ipairs({...}) do
  536. table.insert(scaled, elem*s)
  537. end
  538. ret = ret + (i/power)*(math.abs(func(unpack(scaled))))
  539. end
  540. local args = {...}
  541. local dir_component = args[direction+1]
  542. return math.sin(dir_component+ret)
  543. end
  544.  
  545. return simplex
  546.  
  547.  
  548.  
  549.  
  550.  
  551.  
Advertisement
Add Comment
Please, Sign In to add comment