Advertisement
Guest User

Untitled

a guest
Nov 19th, 2019
140
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 4.20 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage[english]{babel}
  4. \usepackage{tabularx}
  5. \usepackage{graphicx}
  6. \usepackage{amsmath}
  7. \usepackage{physics}
  8. \usepackage{amssymb}
  9. \usepackage[a4paper,margin=4.0cm]{geometry}
  10. \usepackage{float}
  11. \usepackage{fancyhdr}
  12. \usepackage{cases}
  13. \usepackage{subfig}
  14. \pagestyle{fancy}
  15. \lhead{Umeå University\\
  16. Department of Physics\\
  17. Report Computer lab 2}
  18. \rhead{11 November 2019}
  19. \title{Mathematics of Physical Models\\Computer Lab 2}
  20. \author{Anton Morian}
  21. \date{anmo0148@student.umu.se}
  22. \cfoot{}
  23.  
  24.  
  25. \begin{document}
  26. \maketitle
  27. \thispagestyle{fancy}
  28. \newpage
  29. \tableofcontents
  30. \lhead{Anton Morian}
  31. \rhead{Mathematics of Physical Models, 10.5hp\\Cpmputer lab 2}
  32. \cfoot{i}
  33.  
  34.  
  35.  
  36. \newpage
  37. \pagenumbering{arabic}
  38. \cfoot{1}
  39.  
  40. \section{Dimensional analysis}
  41. \subsection{Problem description of dimensional analysis}
  42. In the first section a short dimensional analysis of the two parameters $c$ and $S$ used in this lab. The first parameter $c$ can be found below:
  43. \begin{equation}
  44. \frac{\partial^2 u}{\partial t^{2}}=c^2 \triangledown u.
  45. \end{equation}
  46. The second parameter $S$  comes from the equation:
  47. \begin{equation}
  48.    \rho_{l}(x) \frac{\partial^2}{\partial t^2} v(x,t)=S \frac{\partial^2}{\partial x^2} v(x,t),\quad 0<x<L \quad
  49. \end{equation}
  50. \subsection{Result and discussion of dimensional analysis }
  51. The dimension of $c$ can be obtain from the equation above. With some elementary operation its easy to show that $c$ needs to have the dimension, $[c] = \frac{L}{T}$, as same as the velocity.
  52. With the result from above, the dimension of $S$ can be expressed as, $[S] =\frac{M}{L}\frac{L^2}{T^2} $. Thus $S$ most have the dimension, $[S] = \frac{ML}{T^2}$
  53.  
  54. \newpage
  55. \cfoot{2}
  56. \section{Exercise 1}
  57. \subsection{Problem description of Exercise 1}
  58. What kind of  boundary condition is specified for the PDE below and plot your numeric solution, in the same graph plot the difference between the numeric solution and the analytical solution. The PDE is:
  59. \begin{equation}
  60.    \frac{\partial^2}{\partial{t}^2}u(x,t = 9\frac{\partial^2}{\partial{x}^2}u(x,t), \quad 0 < x < \pi, \quad t > 0,
  61. \end{equation}
  62. \begin{equation}
  63. \label{1.u}
  64.    u(0,t) = u(\pi,t) = 0, \quad t > 0,
  65. \end{equation}
  66. \begin{equation}
  67.    u(x,0) = 3\sin{2x} + 12\sin{13x}, \quad 0 < x < \pi,
  68. \end{equation}
  69. \begin{equation}
  70.    \frac{\partial}{\partial{t}}u(x,0) = 0, \quad 0 < x < \pi,
  71. \end{equation}
  72. and the analytical solution is:
  73. \begin{equation}
  74.    u_{analytic} = 3cos(6t)sin(2x) + 12cos(39t)sin(13x)
  75. \end{equation}
  76. \subsection{Result and discussion of Exercise 1}
  77. The boundary condition in equation \ref{1.u} are homogeneous. Thus both equals 0.
  78. \begin{figure}[H]%
  79.     \centering
  80.     \subfloat[Line graph]{\includegraphics[width=6cm]{u_uan_u_lab_1.png}}%
  81.     \qquad
  82.     \subfloat[Point graph]{\includegraphics[width=6cm]{u_uan_u_lab_1_point.png}}%
  83.     \caption{Both (a) and (b) are graph of the numeric solution $u$ and the difference between $u$ and the analytical solution $u_{an}$.}%
  84.     \label{uan}%
  85. \end{figure}
  86.  
  87.  
  88.  
  89.  
  90.  
  91.  
  92.  
  93.  
  94.  
  95. \newpage
  96. \section{Exercise 2}
  97. \subsection{Problem description of Exercise 2}
  98. A vibrating string is described by the PDE:
  99. \begin{equation}
  100.    \frac{\partial^2}{\partial{t}^2}u(x,t) = \alpha^2\frac{\partial^2}{\partial{x}^2}u(x,t), \quad 0 < x < L, \quad  t > 0
  101.    \end{equation}
  102.    \begin{equation}
  103.        u(0,t) = u(L,t) = 0, \quad t > 0
  104.    \end{equation}
  105.    \begin{equation}
  106.            u(x,0) = f(x), \quad 0 < x < L
  107.    \end{equation}
  108.    \begin{equation}
  109.        \frac{\partial}{\partial{t}}u(x,0) = g(x), \quad 0 < x < L
  110.    \end{equation}
  111.    
  112.  
  113. If the string is pulled into a inverse V-shape, with height h0 at the point x = a, and then released at t = 0 the initial conditions are:
  114. \begin{equation}
  115.    \begin{cases}
  116.        h_0\frac{w}{a}, \quad 0 < x < a\\
  117.        h_0 \frac{1-x}{1-a}, \quad a < x < L
  118.    \end{cases}
  119. \end{equation}
  120. \begin{equation}
  121.    g(x) = 0
  122. \end{equation}
  123. If L = 1 is chosen, the analytical solution is given by:
  124. \begin{equation}
  125.    u_{analytic} = \frac{2h_0}{\pi^2a(1-a)}\sum\limits_{n=1}^{\infty} \frac{1}{n^2}\sin(n\pi a)\sin(n\pi x)\cos(n\pi \alpha t)
  126. \end{equation}
  127.  
  128.  
  129. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement