Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import monkdata as m
- import dtree as d
- import drawtree_qt5 as dt
- monk = [m.monk1, m.monk2, m.monk3]
- monktest = [m.monk1test, m.monk2test, m.monk3test]
- #Assignment 1
- print("Entropy training data")
- for x in range(len(monktest)) : print("MONK", x+1, " :", d.entropy(monktest[x]))
- #Assignment 3
- for x in range(len(monk)):
- print("\ninformationgain monk", x+1)
- for a in range(len(m.attributes)):
- print("Attribute", m.attributes[a].name, " :", d.averageGain(monk[x], m.attributes[a]))
- print("\nBest attributes")
- for x in range(len(monk)):
- print("MONK", x+1, ":", d.bestAttribute(monk[x], m.attributes))
- splits = []
- for x in m.attributes[4].values:
- splits.append(d.select(m.monk1, m.attributes[4], m.attributes[4].values[x-1]))
- for x in splits:
- print("\nInformation gain monk1 a:1 2 3 4 6")
- for a in range(len(m.attributes)):
- if a != 4:
- print(d.averageGain(x, m.attributes[a]))
- print(d.bestAttribute(x, m.attributes))
- tree1 = d.buildTree(m.monk1, m.attributes, 3)
- dt.drawTree(tree1)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement