Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- [07/24/25 10:24:27] INFO Loading textual model 'ViT-B-16-SigLIP-384__webli'
- to memory
- [07/24/25 10:24:27] INFO Setting execution providers to
- ['CUDAExecutionProvider', 'CPUExecutionProvider'],
- in descending order of preference
- 2025-07-24 10:24:30.816710599 [E:onnxruntime:Default, cuda_call.cc:118 CudaCall] CUDNN failure 5000: CUDNN_STATUS_EXECUTION_FAILED ; GPU=0 ; hostname=dbbeeeb0e665 ; file=/onnxruntime_src/onnxruntime/core/providers/cuda/reduction/reduction_ops.cc ; line=571 ; expr=cudnnReduceTensor( CudaKernel::GetCudnnHandle(cuda_stream), reduce_desc, indices_cuda.get(), indices_bytes, workspace_cuda.get(), workspace_bytes, &one, input_tensor, reinterpret_cast<const CudaT*>(input.Data<T>()), &zero, output_tensor, p_output);
- 2025-07-24 10:24:30.816818329 [E:onnxruntime:, sequential_executor.cc:516 ExecuteKernel] Non-zero status code returned while running ReduceL2 node. Name:'ReduceL2_1624' Status Message: CUDNN failure 5000: CUDNN_STATUS_EXECUTION_FAILED ; GPU=0 ; hostname=dbbeeeb0e665 ; file=/onnxruntime_src/onnxruntime/core/providers/cuda/reduction/reduction_ops.cc ; line=571 ; expr=cudnnReduceTensor( CudaKernel::GetCudnnHandle(cuda_stream), reduce_desc, indices_cuda.get(), indices_bytes, workspace_cuda.get(), workspace_bytes, &one, input_tensor, reinterpret_cast<const CudaT*>(input.Data<T>()), &zero, output_tensor, p_output);
- [07/24/25 10:24:30] ERROR Exception in ASGI application
- ╭─────── Traceback (most recent call last) ───────╮
- │ /app/immich/machine-learning/immich_ml/main.py: │
- │ 177 in predict │
- │ │
- │ 174 │ │ inputs = text │
- │ 175 │ else: │
- │ 176 │ │ raise HTTPException(400, "Either │
- │ ❱ 177 │ response = await run_inference(inputs │
- │ 178 │ return ORJSONResponse(response) │
- │ 179 │
- │ 180 │
- │ │
- │ /app/immich/machine-learning/immich_ml/main.py: │
- │ 200 in run_inference │
- │ │
- │ 197 │ │ response[entry["task"]] = output │
- │ 198 │ │
- │ 199 │ without_deps, with_deps = entries │
- │ ❱ 200 │ await asyncio.gather(*[_run_inference │
- │ 201 │ if with_deps: │
- │ 202 │ │ await asyncio.gather(*[_run_infer │
- │ 203 │ if isinstance(payload, Image): │
- │ │
- │ /app/immich/machine-learning/immich_ml/main.py: │
- │ 195 in _run_inference │
- │ │
- │ 192 │ │ │ │ message = f"Task {entry[' │
- │ output of {dep}" │
- │ 193 │ │ │ │ raise HTTPException(400, │
- │ 194 │ │ model = await load(model) │
- │ ❱ 195 │ │ output = await run(model.predict, │
- │ 196 │ │ outputs[model.identity] = output │
- │ 197 │ │ response[entry["task"]] = output │
- │ 198 │
- │ │
- │ /app/immich/machine-learning/immich_ml/main.py: │
- │ 213 in run │
- │ │
- │ 210 │ if thread_pool is None: │
- │ 211 │ │ return func(*args, **kwargs) │
- │ 212 │ partial_func = partial(func, *args, * │
- │ ❱ 213 │ return await asyncio.get_running_loop │
- │ 214 │
- │ 215 │
- │ 216 async def load(model: InferenceModel) -> │
- │ │
- │ /usr/lib/python3.11/concurrent/futures/thread.p │
- │ y:58 in run │
- │ │
- │ /app/immich/machine-learning/immich_ml/models/b │
- │ ase.py:61 in predict │
- │ │
- │ 58 │ │ self.load() │
- │ 59 │ │ if model_kwargs: │
- │ 60 │ │ │ self.configure(**model_kwargs │
- │ ❱ 61 │ │ return self._predict(*inputs, **m │
- │ 62 │ │
- │ 63 │ @abstractmethod │
- │ 64 │ def _predict(self, *inputs: Any, **mo │
- │ │
- │ /app/immich/machine-learning/immich_ml/models/c │
- │ lip/textual.py:24 in _predict │
- │ │
- │ 21 │ │
- │ 22 │ def _predict(self, inputs: str, langu │
- │ 23 │ │ tokens = self.tokenize(inputs, la │
- │ ❱ 24 │ │ res: NDArray[np.float32] = self.s │
- │ 25 │ │ return serialize_np_array(res) │
- │ 26 │ │
- │ 27 │ def _load(self) -> ModelSession: │
- │ │
- │ /app/immich/machine-learning/immich_ml/sessions │
- │ /ort.py:49 in run │
- │ │
- │ 46 │ │ input_feed: dict[str, NDArray[np. │
- │ 47 │ │ run_options: Any = None, │
- │ 48 │ ) -> list[NDArray[np.float32]]: │
- │ ❱ 49 │ │ outputs: list[NDArray[np.float32] │
- │ run_options) │
- │ 50 │ │ return outputs │
- │ 51 │ │
- │ 52 │ @property │
- │ │
- │ /lsiopy/lib/python3.11/site-packages/onnxruntim │
- │ e/capi/onnxruntime_inference_collection.py:220 │
- │ in run │
- │ │
- │ 217 │ │ if not output_names: │
- │ 218 │ │ │ output_names = [output.name │
- │ 219 │ │ try: │
- │ ❱ 220 │ │ │ return self._sess.run(output │
- │ 221 │ │ except C.EPFail as err: │
- │ 222 │ │ │ if self._enable_fallback: │
- │ 223 │ │ │ │ print(f"EP Error: {err!s │
- ╰─────────────────────────────────────────────────╯
- Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero
- status code returned while running ReduceL2 node.
- Name:'ReduceL2_1624' Status Message: CUDNN failure
- 5000: CUDNN_STATUS_EXECUTION_FAILED ; GPU=0 ;
- hostname=dbbeeeb0e665 ;
- file=/onnxruntime_src/onnxruntime/core/providers/cu
- da/reduction/reduction_ops.cc ; line=571 ;
- expr=cudnnReduceTensor(
- CudaKernel::GetCudnnHandle(cuda_stream),
- reduce_desc, indices_cuda.get(), indices_bytes,
- workspace_cuda.get(), workspace_bytes, &one,
- input_tensor, reinterpret_cast<const
- CudaT*>(input.Data<T>()), &zero, output_tensor,
- p_output);
- [Nest] 678 - 07/24/2025, 10:24:31 AM WARN [Api:MachineLearningRepository~iszohiy5] Machine learning request to "http://127.0.0.1:3003" failed with status 500: Internal Server Error
- [Nest] 678 - 07/24/2025, 10:24:31 AM ERROR [Api:ErrorInterceptor~iszohiy5] Unknown error: Error: Machine learning request '{"clip":{"textual":{"modelName":"ViT-B-16-SigLIP-384__webli","options":{"language":"nl-NL"}}}}' failed for all URLs
- Error: Machine learning request '{"clip":{"textual":{"modelName":"ViT-B-16-SigLIP-384__webli","options":{"language":"nl-NL"}}}}' failed for all URLs
- at MachineLearningRepository.predict (/app/immich/server/dist/repositories/machine-learning.repository.js:98:15)
- at process.processTicksAndRejections (node:internal/process/task_queues:105:5)
- at async MachineLearningRepository.encodeText (/app/immich/server/dist/repositories/machine-learning.repository.js:121:26)
- at async SearchService.searchSmart (/app/immich/server/dist/services/search.service.js:84:25)
Advertisement
Add Comment
Please, Sign In to add comment