Advertisement
brandblox

numpy Semi main (1/4/24)

Mar 31st, 2024 (edited)
885
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.39 KB | None | 0 0
  1. # Function to calculate mean
  2. def calculate_mean(data):
  3.     return sum(data) / len(data)
  4.  
  5. # Function to calculate median
  6. def calculate_median(data):
  7.     sorted_data = sorted(data)
  8.     n = len(sorted_data)
  9.     if n % 2 == 0:
  10.         return (sorted_data[n // 2 - 1] + sorted_data[n // 2]) / 2
  11.     else:
  12.         return sorted_data[n // 2]
  13.  
  14. # Function to calculate mode
  15. def calculate_mode(data):
  16.     frequency = {}
  17.     for value in data:
  18.         frequency[value] = frequency.get(value, 0) + 1
  19.  
  20.     max_frequency = max(frequency.values())
  21.     mode = [key for key, val in frequency.items() if val == max_frequency]
  22.     return mode
  23.  
  24. # User input for data
  25. data = []
  26. while True:
  27.     value = input("Enter a number (or 'done' to finish): ")
  28.     if value.lower() == 'done':
  29.         break
  30.     data.append(int(value))
  31.  
  32. # Calculate mean
  33. mean = calculate_mean(data)
  34. print("Mean:", mean)
  35.  
  36. # Calculate median
  37. median = calculate_median(data)
  38. print("Median:", median)
  39.  
  40. # Calculate mode
  41. mode = calculate_mode(data)
  42. print("Mode:", mode)
  43.  
  44.  
  45.  
  46.  
  47.  
  48. #Liner regression
  49. import numpy as np
  50. from sklearn.linear_model import LinearRegression
  51.  
  52. years = np.array([[1], [2], [3], [4], [5]])
  53. speeds = np.array([30, 45, 45, 55, 65])  
  54.  
  55.  
  56. model = LinearRegression()
  57. model.fit(years, speeds)
  58.  
  59. x= 15
  60. predicted_speed = model.predict([[x]])
  61.  
  62. print(f"Predicted speed after {x} years:", predicted_speed[0], "km/h")
  63.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement