SHARE
TWEET

Untitled

a guest Jul 18th, 2019 48 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. Distance(m) = [0, 0.0022, 0.0044, .... 0.81 ]
  2.   Height(m) = [ 0, 0.1, 0.5, 0.4, 0.9, .... 0.1]
  3.  
  4.   df3['categories'] = pd.cut(df3['Distance(m)'], bins)
  5.  
  6.   df4=df3.groupby('categories')['Hauteur(m)'].agg({'max': 'max', 'min': 'min', 'average': 'mean'})
  7.      
  8. Hauteur_Acum(cm)  categories
  9.   0
  10.   0,047998564   (0,0, 0,0444]
  11.   0,538474493   (0,0, 0,0444]
  12.   1,094536073   (0,0, 0,0444]
  13.   1,243943902   (0,0, 0,0444]
  14.   1,246167237   (0,0, 0,0444]
  15.   1,432927212   (0,0, 0,0444]
  16.   1,508075869   (0,0, 0,0444]
  17.   1,417363865   (0,0, 0,0444]
  18.   1,419142647   (0,0, 0,0444]
  19.   1,38045665    (0,0, 0,0444]
  20.   1,408470524   (0,0, 0,0444]
  21.   1,359557147   (0,0, 0,0444]
  22.   1,330653978   (0,0, 0,0444]
  23.   1,6085707 (0,0, 0,0444]
  24.   1,395575255   (0,0, 0,0444]
  25.   1,412472641   (0,0, 0,0444]
  26.   1,123884174   (0,0, 0,0444]
  27.   1,31064396    (0,0, 0,0444]
  28.   1,248390572   (0,0, 0,0444]
  29.   1,230159336   (0,0, 0,0444]
  30.   1,117214168   (0,0, 0,0444]
  31.   0,968695825   (0,0, 0,0444]
  32.   0,985148279   (0,0, 0,0444]
  33.   1,030949024   (0,0, 0,0444]
  34.   0,831034079   (0,0, 0,0444]
  35.   0,864709963   (0,0444, 0,0888]
  36.   0,969140378   (0,0444, 0,0888]
  37.   0,821036536   (0,0444, 0,0888]
  38.   0,875233712   (0,0444, 0,0888]
  39.      
  40. iio=df1.iat[0,10]
  41.  
  42. df81 = df3.groupby('categories')['Hauteur_Acum(cm)'].agg({'value': 'df1.iat[0,10]'})
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top