Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Import packages
- import os
- import cv2
- import numpy as np
- import tensorflow as tf
- import argparse
- import sys
- import tensorflow.compat.v1 as tf
- tf.disable_v2_behavior()
- # Set up camera constants
- IM_WIDTH = 640
- IM_HEIGHT = 480
- # Select camera type (if user enters --usbcam when calling this script,
- # a USB webcam will be used)
- parser = argparse.ArgumentParser()
- parser.add_argument('--usbcam', help='Use a USB webcam instead of picamera',
- action='store_true')
- args = parser.parse_args()
- if args.usbcam:
- camera_type = 'usb'
- #### Initialize TensorFlow model ####
- # This is needed since the working directory is the object_detection folder.
- sys.path.append('..')
- # Import utilites
- from object_detection.utils import label_map_util
- from object_detection.utils import visualization_utils as vis_util
- # Name of the directory containing the object detection module we're using
- MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
- # Grab path to current working directory
- CWD_PATH = os.getcwd()
- # Path to frozen detection graph .pb file, which contains the model that is used
- # for object detection.
- PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
- # Path to label map file
- PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt')
- # Number of classes the object detector can identify
- NUM_CLASSES = 90
- ## Load the label map.
- # Label maps map indices to category names, so that when the convolution
- # network predicts `5`, we know that this corresponds to `airplane`.
- # Here we use internal utility functions, but anything that returns a
- # dictionary mapping integers to appropriate string labels would be fine
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
- # Load the Tensorflow model into memory.
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
- sess = tf.Session(graph=detection_graph)
- # Define input and output tensors (i.e. data) for the object detection classifier
- # Input tensor is the image
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- # Output tensors are the detection boxes, scores, and classes
- # Each box represents a part of the image where a particular object was detected
- detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- # Each score represents level of confidence for each of the objects.
- # The score is shown on the result image, together with the class label.
- detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
- detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
- # Number of objects detected
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- #### Initialize other parameters ####
- # Initialize frame rate calculation
- frame_rate_calc = 1
- freq = cv2.getTickFrequency()
- font = cv2.FONT_HERSHEY_SIMPLEX
- # Define inside box coordinates (top left and bottom right)
- TL_inside = (int(IM_WIDTH*0.016),int(IM_HEIGHT*0.021))
- BR_inside = (int(IM_WIDTH*0.323),int(IM_HEIGHT*0.979))
- # Define outside box coordinates (top left and bottom right)
- TL_outside = (int(IM_WIDTH*0.333),int(IM_HEIGHT*0.021))
- BR_outside = (int(IM_WIDTH*0.673),int(IM_HEIGHT*0.979))
- # Define outside box coordinates (top left and bottom right)
- TL_right = (int(IM_WIDTH*0.683),int(IM_HEIGHT*0.021))
- BR_right = (int(IM_WIDTH*0.986),int(IM_HEIGHT*0.979))
- # Initialize control variables used for pet detector
- detected_inside = False
- detected_outside = False
- detected_right = False
- inside_counter = 0
- outside_counter = 0
- right_counter = 0
- pause = 0
- pause_counter = 0
- #### Pet detection function ####
- # This function contains the code to detect a pet, determine if it's
- # inside or outside, and send a text to the user's phone.
- def pet_detector(frame):
- # Use globals for the control variables so they retain their value after function exits
- global detected_inside, detected_outside, detected_right
- global inside_counter, outside_counter, right_counter
- global pause, pause_counter
- frame_expanded = np.expand_dims(frame, axis=0)
- # Perform the actual detection by running the model with the image as input
- (boxes, scores, classes, num) = sess.run(
- [detection_boxes, detection_scores, detection_classes, num_detections],
- feed_dict={image_tensor: frame_expanded})
- # Draw the results of the detection (aka 'visulaize the results')
- vis_util.visualize_boxes_and_labels_on_image_array(
- frame,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- use_normalized_coordinates=True,
- line_thickness=8,
- min_score_thresh=0.40)
- # Draw boxes defining "outside" and "inside" locations.
- cv2.rectangle(frame,TL_outside,BR_outside,(255,20,20),3)
- cv2.putText(frame,"Outside box",(TL_outside[0]+10,TL_outside[1]-10),font,1,(255,20,255),3,cv2.LINE_AA)
- cv2.rectangle(frame,TL_inside,BR_inside,(20,20,255),3)
- cv2.putText(frame,"Inside box",(TL_inside[0]+10,TL_inside[1]-10),font,1,(20,255,255),3,cv2.LINE_AA)
- cv2.rectangle(frame,TL_right,BR_right,(20,255,25),3)
- cv2.putText(frame,"right box",(TL_right[0]+10,TL_right[1]-10),font,1,(20,255,255),3,cv2.LINE_AA)
- # Check the class of the top detected object by looking at classes[0][0].
- # If the top detected object is a cat (17) or a dog (18) (or a teddy bear (88) for test purposes),
- # find its center coordinates by looking at the boxes[0][0] variable.
- # boxes[0][0] variable holds coordinates of detected objects as (ymin, xmin, ymax, xmax)
- if (((int(classes[0][0]) == 1) or (int(classes[0][0] == 18) or (int(classes[0][0]) == 88))) and (pause == 0)):
- x = int(((boxes[0][0][1]+boxes[0][0][3])/2)*IM_WIDTH)
- y = int(((boxes[0][0][0]+boxes[0][0][2])/2)*IM_HEIGHT)
- # Draw a circle at center of object
- cv2.circle(frame,(x,y), 5, (75,13,180), -1)
- # If object is in inside box, increment inside counter variable
- if ((x > TL_inside[0]) and (x < BR_inside[0]) and (y > TL_inside[1]) and (y < BR_inside[1])):
- inside_counter = inside_counter + 1
- # If object is in outside box, increment outside counter variable
- if ((x > TL_outside[0]) and (x < BR_outside[0]) and (y > TL_outside[1]) and (y < BR_outside[1])):
- outside_counter = outside_counter + 1
- # If object is in outside box, increment outside counter variable
- if ((x > TL_right[0]) and (x < BR_right[0]) and (y > TL_right[1]) and (y < BR_right[1])):
- right_counter = right_counter + 1
- # If pet has been detected inside for more than 10 frames, set detected_inside flag
- # and send a text to the phone.
- if inside_counter == 1:
- detected_inside = True
- inside_counter = 0
- outside_counter = 0
- right_counter = 0
- # Pause pet detection by setting "pause" flag
- pause = 1
- # If pet has been detected outside for more than 10 frames, set detected_outside flag
- # and send a text to the phone.
- if outside_counter == 1:
- detected_outside = True
- inside_counter = 0
- outside_counter = 0
- right_counter = 0
- # Pause pet detection by setting "pause" flag
- pause = 1
- # If pet has been detected outside for more than 10 frames, set detected_outside flag
- # and send a text to the phone.
- if right_counter == 1:
- detected_right = True
- inside_counter = 0
- outside_counter = 0
- right_counter = 0
- # Pause pet detection by setting "pause" flag
- pause = 1
- # If pause flag is set, draw message on screen.
- if pause == 1:
- if detected_inside == True:
- cv2.putText(frame,'Left detected!',(int(IM_WIDTH*0.027),int(IM_HEIGHT-60)),font,3,(0,0,0),7,cv2.LINE_AA)
- cv2.putText(frame,'Left detected!',(int(IM_WIDTH*0.967),int(IM_HEIGHT-60)),font,3,(95,176,23),5,cv2.LINE_AA)
- if detected_outside == True:
- cv2.putText(frame,'Mid detected!',(int(IM_WIDTH*0.027),int(IM_HEIGHT-60)),font,3,(0,0,0),7,cv2.LINE_AA)
- cv2.putText(frame,'Mid detected!',(int(IM_WIDTH*0.967),int(IM_HEIGHT-60)),font,3,(95,176,23),5,cv2.LINE_AA)
- if detected_right == True:
- cv2.putText(frame,'Right detected!',(int(IM_WIDTH*0.027),int(IM_HEIGHT-60)),font,3,(0,0,0),7,cv2.LINE_AA)
- cv2.putText(frame,'Right detected!',(int(IM_WIDTH*0.967),int(IM_HEIGHT-60)),font,3,(95,176,23),5,cv2.LINE_AA)
- # Increment pause counter until it reaches 30 (for a framerate of 1.5 FPS, this is about 20 seconds),
- # then unpause the application (set pause flag to 0).
- pause_counter = pause_counter + 1
- if pause_counter > 3:
- pause = 0
- pause_counter = 0
- detected_inside = False
- detected_outside = False
- detected_right = False
- # Draw counter info
- cv2.putText(frame,'Detection counter: ' + str(max(inside_counter,outside_counter, right_counter)),(10,100),font,0.5,(255,255,0),1,cv2.LINE_AA)
- cv2.putText(frame,'Pause counter: ' + str(pause_counter),(10,150),font,0.5,(255,255,0),1,cv2.LINE_AA)
- return frame
- #### Initialize camera and perform object detection ####
- # The camera has to be set up and used differently depending on if it's a
- # Picamera or USB webcam.
- ### USB webcam ###
- # Initialize USB webcam feed
- camera = cv2.VideoCapture(0)
- ret = camera.set(3,IM_WIDTH)
- ret = camera.set(4,IM_HEIGHT)
- # Continuously capture frames and perform object detection on them
- while(True):
- t1 = cv2.getTickCount()
- # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
- # i.e. a single-column array, where each item in the column has the pixel RGB value
- ret, frame = camera.read()
- # Pass frame into pet detection function
- frame = pet_detector(frame)
- # Draw FPS
- cv2.putText(frame,"FPS: {0:.2f}".format(frame_rate_calc),(30,50),font,1,(255,255,0),2,cv2.LINE_AA)
- # All the results have been drawn on the frame, so it's time to display it.
- cv2.imshow('Object detector', frame)
- # FPS calculation
- t2 = cv2.getTickCount()
- time1 = (t2-t1)/freq
- frame_rate_calc = 1/time1
- # Press 'q' to quit
- if cv2.waitKey(1) == ord('q'):
- break
- camera.release()
- cv2.destroyAllWindows()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement