Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- ############################################ train
- training_size = 300
- img_size = 20*20*3
- #class Struct:
- # "A structure that can have any fields defined."
- # def __init__(self, **entries): self.__dict__.update(entries)
- #training_images=[];
- #training_labels=[];
- #training_data= Struct(training_set=training_images, labels=training_labels)
- training_images = np.empty(shape=(training_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- training_images[i] = image
- i+=1
- print(training_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- training_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(training_labels)
- #############Converting to the numpy array
- from sklearn.preprocessing import OneHotEncoder
- training_label = OneHotEncoder(sparse=False).fit_transform(np.asarray(a).reshape(-1, 1))
- print(training_label)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement