olokos

Windows training problem

Aug 27th, 2022
339
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.90 KB | None | 0 0
  1. PS C:\DarknetOpenCV\DarkPlate> darknet detector -map -dont_show train nn/own_darkmark_dataset.data nn/own_darkmark_dataset.cfg
  2. CUDA-version: 11000 (11070), cuDNN: 8.0.5, GPU count: 1
  3. OpenCV version: 4.6.0
  4. Prepare additional network for mAP calculation...
  5. 0 : compute_capability = 610, cudnn_half = 0, GPU: NVIDIA GeForce GTX 1070
  6. net.optimized_memory = 0
  7. mini_batch = 1, batch = 4, time_steps = 1, train = 0
  8. layer filters size/strd(dil) input output
  9. 0 Create CUDA-stream - 0
  10. Create cudnn-handle 0
  11. conv 32 3 x 3/ 2 1152 x 864 x 3 -> 576 x 432 x 32 0.430 BF
  12. 1 conv 64 3 x 3/ 2 576 x 432 x 32 -> 288 x 216 x 64 2.293 BF
  13. 2 conv 64 3 x 3/ 1 288 x 216 x 64 -> 288 x 216 x 64 4.586 BF
  14. 3 route 2 1/2 -> 288 x 216 x 32
  15. 4 conv 32 3 x 3/ 1 288 x 216 x 32 -> 288 x 216 x 32 1.147 BF
  16. 5 conv 32 3 x 3/ 1 288 x 216 x 32 -> 288 x 216 x 32 1.147 BF
  17. 6 route 5 4 -> 288 x 216 x 64
  18. 7 conv 64 1 x 1/ 1 288 x 216 x 64 -> 288 x 216 x 64 0.510 BF
  19. 8 route 2 7 -> 288 x 216 x 128
  20. 9 max 2x 2/ 2 288 x 216 x 128 -> 144 x 108 x 128 0.008 BF
  21. 10 conv 128 3 x 3/ 1 144 x 108 x 128 -> 144 x 108 x 128 4.586 BF
  22. 11 route 10 1/2 -> 144 x 108 x 64
  23. 12 conv 64 3 x 3/ 1 144 x 108 x 64 -> 144 x 108 x 64 1.147 BF
  24. 13 conv 64 3 x 3/ 1 144 x 108 x 64 -> 144 x 108 x 64 1.147 BF
  25. 14 route 13 12 -> 144 x 108 x 128
  26. 15 conv 128 1 x 1/ 1 144 x 108 x 128 -> 144 x 108 x 128 0.510 BF
  27. 16 route 10 15 -> 144 x 108 x 256
  28. 17 max 2x 2/ 2 144 x 108 x 256 -> 72 x 54 x 256 0.004 BF
  29. 18 conv 256 3 x 3/ 1 72 x 54 x 256 -> 72 x 54 x 256 4.586 BF
  30. 19 route 18 1/2 -> 72 x 54 x 128
  31. 20 conv 128 3 x 3/ 1 72 x 54 x 128 -> 72 x 54 x 128 1.147 BF
  32. 21 conv 128 3 x 3/ 1 72 x 54 x 128 -> 72 x 54 x 128 1.147 BF
  33. 22 route 21 20 -> 72 x 54 x 256
  34. 23 conv 256 1 x 1/ 1 72 x 54 x 256 -> 72 x 54 x 256 0.510 BF
  35. 24 route 18 23 -> 72 x 54 x 512
  36. 25 max 2x 2/ 2 72 x 54 x 512 -> 36 x 27 x 512 0.002 BF
  37. 26 conv 512 3 x 3/ 1 36 x 27 x 512 -> 36 x 27 x 512 4.586 BF
  38. 27 conv 256 1 x 1/ 1 36 x 27 x 512 -> 36 x 27 x 256 0.255 BF
  39. 28 conv 512 3 x 3/ 1 36 x 27 x 256 -> 36 x 27 x 512 2.293 BF
  40. 29 conv 126 1 x 1/ 1 36 x 27 x 512 -> 36 x 27 x 126 0.125 BF
  41. 30 yolo
  42. [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
  43. nms_kind: greedynms (1), beta = 0.600000
  44. 31 route 27 -> 36 x 27 x 256
  45. 32 conv 128 1 x 1/ 1 36 x 27 x 256 -> 36 x 27 x 128 0.064 BF
  46. 33 upsample 2x 36 x 27 x 128 -> 72 x 54 x 128
  47. 34 route 33 23 -> 72 x 54 x 384
  48. 35 conv 256 3 x 3/ 1 72 x 54 x 384 -> 72 x 54 x 256 6.880 BF
  49. 36 conv 126 1 x 1/ 1 72 x 54 x 256 -> 72 x 54 x 126 0.251 BF
  50. 37 yolo
  51. [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
  52. nms_kind: greedynms (1), beta = 0.600000
  53. Total BFLOPS 39.359
  54. avg_outputs = 1751134
  55. Allocate additional workspace_size = 9.45 MB
  56. own_darkmark_dataset
  57. 0 : compute_capability = 610, cudnn_half = 0, GPU: NVIDIA GeForce GTX 1070
  58. net.optimized_memory = 0
  59. mini_batch = 16, batch = 64, time_steps = 1, train = 1
  60. layer filters size/strd(dil) input output
  61. 0 conv 32 3 x 3/ 2 1152 x 864 x 3 -> 576 x 432 x 32 0.430 BF
  62. 1 conv 64 3 x 3/ 2 576 x 432 x 32 -> 288 x 216 x 64 2.293 BF
  63. 2 conv 64 3 x 3/ 1 288 x 216 x 64 -> 288 x 216 x 64 4.586 BF
  64. 3 route 2 1/2 -> 288 x 216 x 32
  65. 4 conv 32 3 x 3/ 1 288 x 216 x 32 -> 288 x 216 x 32 1.147 BF
  66. 5 conv 32 3 x 3/ 1 288 x 216 x 32 -> 288 x 216 x 32 1.147 BF
  67. 6 route 5 4 -> 288 x 216 x 64
  68. 7 conv 64 1 x 1/ 1 288 x 216 x 64 -> 288 x 216 x 64 0.510 BF
  69. 8 route 2 7 -> 288 x 216 x 128
  70. 9 max 2x 2/ 2 288 x 216 x 128 -> 144 x 108 x 128 0.008 BF
  71. 10 conv 128 3 x 3/ 1 144 x 108 x 128 -> 144 x 108 x 128 4.586 BF
  72. 11 route 10 1/2 -> 144 x 108 x 64
  73. 12 Error: cuDNN isn't found FWD algo for convolution.
  74.  
Advertisement
Add Comment
Please, Sign In to add comment