MatsGranvik

Alternating Riemann zeta function truncated series expansion as characteristic polynomial of Hermiti

Jan 20th, 2021
241
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.91 KB | None | 0 0
  1. Clear[Z, n, k, x, x, solDet, solSeries];
  2. nn = 2;
  3. MatrixForm[
  4. ZaMainDiagonal =
  5. Table[Table[
  6. ToExpression[StringJoin["a", ToString[n], ToString[k]]]*
  7. If[n == k, 1, 0], {k, 1, nn}], {n, 1, nn}]];
  8. MatrixForm[
  9. ZaLower =
  10. Table[Table[
  11. ToExpression[StringJoin["a", ToString[n], ToString[k]]]*
  12. If[n > k, 1, 0], {k, 1, nn}], {n, 1, nn}]];
  13. MatrixForm[ZaUpper = Transpose[ZaLower]];
  14. MatrixForm[
  15. ZbLower =
  16. Table[Table[
  17. ToExpression[StringJoin["b", ToString[n], ToString[k]]]*
  18. If[n > k, I, 0], {k, 1, nn}], {n, 1, nn}]];
  19. MatrixForm[ZbUpper = Transpose[ZbLower]];
  20. MatrixForm[
  21. Z = ZaLower + ZaUpper + ZbLower - ZbUpper + ZaMainDiagonal -
  22. IdentityMatrix[nn]*x]
  23. solDet = x /. Solve[Det[Z] == 0, x]
  24. solSeries =
  25. x /. Solve[
  26. Normal[Series[Sum[(-1)^(n + 1)/n^x, {n, 1, nn}], {x, 0, nn}]] == 0,
  27. x]
  28. Solve[solDet[[1]] == solSeries[[1]] && solDet[[2]] == solSeries[[2]]]
Advertisement
Add Comment
Please, Sign In to add comment