Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- from sklearn.model_selection import train_test_split
- from sklearn.feature_extraction.text import TfidfVectorizer
- from sklearn.ensemble import RandomForestClassifier
- from sklearn.metrics import classification_report
- # 1. Cargar dataset
- df = pd.read_csv("emails_phishing.csv")
- X_train, X_test, y_train, y_test = train_test_split(
- df['text'], df['label'], test_size=0.2, random_state=42)
- # 2. Vectorización TF-IDF
- vectorizer = TfidfVectorizer(max_features=3000)
- X_train_vec = vectorizer.fit_transform(X_train)
- X_test_vec = vectorizer.transform(X_test)
- # 3. Entrenamiento
- model = RandomForestClassifier(n_estimators=200, random_state=42)
- model.fit(X_train_vec, y_train)
- # 4. Evaluación
- y_pred = model.predict(X_test_vec)
- print(classification_report(y_test, y_pred))
Advertisement
Add Comment
Please, Sign In to add comment