Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #%from tensorflow.examples.tutorials.mnist import input_data
- #mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- #x = tf.placeholder(tf.float32, [None, 784])
- #W = tf.Variable(tf.zeros([784, 10]))
- #b = tf.Variable(tf.zeros([10]))
- #y = tf.nn.softmax(tf.matmul(x, W) + b)
- #y_ = tf.placeholder(tf.float32, [None, 10])
- #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
- #train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
- #sess = tf.InteractiveSession()
- #tf.global_variables_initializer().run()
- #for _ in range(1000):
- # batch_xs, batch_ys = mnist.train.next_batch(100)
- #sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- # correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
- #accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- #print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))%
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- ############################################ train
- training_size = 300
- img_size = 20*20*3
- class Struct:
- "A structure that can have any fields defined."
- def __init__(self, **entries): self.__dict__.update(entries)
- training_images=[];
- training_labels=[];
- training_data= Struct(training_set=training_images, labels=training_labels)
- training_images = np.empty(shape=(training_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- training_images[i] = image
- i+=1
- print(training_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- training_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(training_labels)
- #################################################### test
- test_size = 300
- img_size = 20*20*3
- class Struct:
- "A structure that can have any fields defined."
- def __init__(self, **entries): self.__dict__.update(entries)
- test_images=[];
- test_labels=[];
- test_data= Struct(training_set=test_images, labels=test_labels)
- test_images = np.empty(shape=(test_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- test_images[i] = image
- i+=1
- print(test_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- test_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(test_labels)
- x = tf.placeholder(tf.float64, [None, img_size])
- W = tf.Variable(tf.zeros([img_size, 3], dtype=tf.float64))
- b = tf.Variable(tf.zeros([3], dtype=tf.float64))
- y = tf.nn.softmax(tf.matmul(x, W) + b)
- y_ = tf.placeholder(tf.float64, [None, 3])
- cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
- train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
- sess = tf.InteractiveSession()
- tf.global_variables_initializer().run()
- for _ in range(300):
- batch_xs, batch_ys = training_data.next_batch(100)
- sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
- correct_prediction = tf.equal(training_images, training_labels)
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
- print(sess.run(accuracy, feed_dict={x: test_images, y_: test_labels}))
Advertisement
Add Comment
Please, Sign In to add comment