MatsGranvik

Integrated Euler Maclaurin formula for Riemann zeta

Feb 5th, 2017
564
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.05 KB | None | 0 0
  1. (*Mathematica start*)
  2. (*korrekt plot av integralen*)
  3. (*k and q are the crucial parameters in the integrate Euler Maclaurin \
  4. formula for the Riemann zeta function*)
  5. Clear[q, k, r, m, i, s]
  6. Clear[q, k, r, m, i, s, n, x, a, b, t]
  7. k = 30;
  8. q = 10;
  9. Plot[Re[-I*((0*1/2 + I*t) - Sum[n^(-(1/2 + I*t))/Log[n], {n, 2, k}] +
  10. ExpIntegralEi[-(-1 + (1/2 + I*t)) Log[k]] +
  11. k^-(1/2 + I*t)/(2 Log[k]) +
  12. Sum[Sum[BernoulliB[2*r]/((2*r)!)*Abs[StirlingS1[2*r - 1, i]]*
  13. k^(-(1/2 + I*t) - 2*r + 1)*(1/2 + I*t)^i*
  14. Sum[-(i!/m!/(Log[k]^(i + 1 - m)*(1/2 + I*t)^(i - m))), {m, 0,
  15. i}], {i, 1, 2*r - 1}], {r, 1,
  16. q - 1}]) - (-I*((0*1/2 + I*t*0)*0 -
  17. Sum[n^(-(1/2 + I*t*0))/Log[n], {n, 2, k}] +
  18. ExpIntegralEi[-(-1 + (1/2 + I*t*0)) Log[k]] +
  19. k^-(1/2 + I*t*0)/(2 Log[k]) +
  20. Sum[Sum[BernoulliB[2*r]/((2*r)!)*Abs[StirlingS1[2*r - 1, i]]*
  21. k^(-(1/2 + I*t*0) - 2*r + 1)*(1/2 + I*t*0)^i*
  22. Sum[-(i!/m!/(Log[k]^(i + 1 - m)*(1/2 + I*t*0)^(i - m))), {m,
  23. 0, i}], {i, 1, 2*r - 1}], {r, 1, q - 1}]))], {t, 0, 60}]
  24.  
  25.  
  26.  
  27. (*31.1.2017 den här fullständigt fungerande integral numeriskt \
  28. korrekt*)
  29. Clear[q, k, r, m, i, s, n, x, a, b, t]
  30. k = 30;
  31. q = 10;
  32.  
  33. s1 = N[1/2 + I*0, 20];
  34. s = s1;
  35. a = -I (s - Sum[n^(-s)/Log[n], {n, 2, k}] +
  36. ExpIntegralEi[-(-1 + s) Log[k]] + k^-s/(2 Log[k]) +
  37. Sum[Sum[BernoulliB[2*r]/((2*r)!)*Abs[StirlingS1[2*r - 1, i]]*
  38. k^(-s - 2*r + 1)*s^i*
  39. Sum[-(i!/m!/(Log[k]^(i + 1 - m)*s^(i - m))), {m, 0, i}], {i,
  40. 1, 2*r - 1}], {r, 1, q - 1}]);
  41.  
  42. s2 = N[1/2 + I*60, 20];
  43. s = s2;
  44. b = -I (s - Sum[n^(-s)/Log[n], {n, 2, k}] +
  45. ExpIntegralEi[-(-1 + s) Log[k]] + k^-s/(2 Log[k]) +
  46. Sum[Sum[BernoulliB[2*r]/((2*r)!)*Abs[StirlingS1[2*r - 1, i]]*
  47. k^(-s - 2*r + 1)*s^i*
  48. Sum[-(i!/m!/(Log[k]^(i + 1 - m)*s^(i - m))), {m, 0, i}], {i,
  49. 1, 2*r - 1}], {r, 1, q - 1}]);
  50.  
  51. (b - a)
  52. NIntegrate[-I*Zeta[s], {s, s1, s2}, WorkingPrecision -> 20]
  53. NIntegrate[Zeta[1/2 + I*t], {t, 0, 60}, WorkingPrecision -> 20]
  54. (*end*)
Advertisement
Add Comment
Please, Sign In to add comment