MatsGranvik

A191904 Logarithms Dirichlet series table roots of unity

Jul 22nd, 2022
163
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.54 KB | None | 0 0
  1. (*start*)
  2. Clear[n, k, nn];
  3. nn = 10;
  4. TableForm[
  5. Chop[N[Table[
  6. Table[ k/(2*Pi*I) (Log[(-E^(((2 I (n + 1) \[Pi])/k)))] -
  7. Log[(-E^(((2 I n \[Pi])/k)))]), {k, 1, nn}], {n, 1, nn}]]]]
  8. (*end*)
  9.  
  10. {{0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
  11. {0, -1, 1, 1, 1, 1, 1, 1, 1, 1},
  12. {0, 1, -2, 1, 1, 1, 1, 1, 1, 1},
  13. {0, -1, 1, -3, 1, 1, 1, 1, 1, 1},
  14. {0, 1, 1, 1, -4, 1, 1, 1, 1, 1},
  15. {0, -1, -2, 1, 1, -5, 1, 1, 1, 1},
  16. {0, 1, 1, 1, 1, 1, -6, 1, 1, 1},
  17. {0, -1, 1, -3, 1, 1, 1, -7, 1, 1},
  18. {0, 1, -2, 1, 1, 1, 1, 1, -8, 1},
  19. {0, -1, 1, 1, -4, 1, 1, 1, 1, -9}}
Advertisement
Add Comment
Please, Sign In to add comment