Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- -- FFT Implementation in PostgreSQL
- -- This implementation follows the detailed plan to compute the FFT of a set of input points using SQL.
- -- It creates the input table, reorders the data using bit reversal, and then applies the butterfly computations in a loop.
- -- Finally, it stores the FFT output in the FinalResults table.
- -- Note: This implementation assumes that the number of input points (N) is a power of 2.
- -------------------------
- -- 1. Data Preparation --
- -------------------------
- DROP TABLE IF EXISTS InputData;
- CREATE TABLE InputData (
- id INTEGER PRIMARY KEY,
- real DOUBLE PRECISION,
- imaginary DOUBLE PRECISION
- );
- -- Insert sample data for 8 points (a power-of-2 data set)
- INSERT INTO InputData (id, real, imaginary) VALUES
- (0, 1.0, 0.0),
- (1, 1.0, 0.0),
- (2, 1.0, 0.0),
- (3, 1.0, 0.0),
- (4, 1.0, 0.0),
- (5, 1.0, 0.0),
- (6, 1.0, 0.0),
- (7, 1.0, 0.0);
- DROP TABLE IF EXISTS FinalResults;
- CREATE TABLE FinalResults (
- id INTEGER PRIMARY KEY,
- real DOUBLE PRECISION,
- imaginary DOUBLE PRECISION
- );
- ---------------------------------------
- -- 2. Bit Reversal Implementation --
- ---------------------------------------
- -- The following UDF computes the bit-reversed index for a given integer 'x' over 'bits' bits.
- CREATE OR REPLACE FUNCTION bit_reverse(x INTEGER, bits INTEGER) RETURNS INTEGER AS $$
- DECLARE
- result INTEGER := 0;
- i INTEGER;
- BEGIN
- FOR i IN 0..(bits - 1) LOOP
- result := (result << 1) | ((x >> i) & 1);
- END LOOP;
- RETURN result;
- END;
- $$ LANGUAGE plpgsql IMMUTABLE STRICT;
- ------------------------------------------------
- -- 3. Complex Arithmetic Functions (UDFs) --
- ------------------------------------------------
- -- These functions implement complex addition and multiplication.
- DROP FUNCTION IF EXISTS complex_add(DOUBLE PRECISION, DOUBLE PRECISION, DOUBLE PRECISION, DOUBLE PRECISION);
- DROP FUNCTION IF EXISTS complex_multiply(DOUBLE PRECISION, DOUBLE PRECISION, DOUBLE PRECISION, DOUBLE PRECISION);
- -- Complex addition: (r1 + i1*i) + (r2 + i2*i)
- CREATE OR REPLACE FUNCTION complex_add(r1 DOUBLE PRECISION, i1 DOUBLE PRECISION, r2 DOUBLE PRECISION, i2 DOUBLE PRECISION)
- RETURNS TABLE(comp_real DOUBLE PRECISION, comp_imaginary DOUBLE PRECISION) AS $$
- BEGIN
- RETURN QUERY SELECT r1 + r2, i1 + i2;
- END;
- $$ LANGUAGE plpgsql;
- -- Complex multiplication: (r1 + i1*i) * (r2 + i2*i)
- CREATE OR REPLACE FUNCTION complex_multiply(r1 DOUBLE PRECISION, i1 DOUBLE PRECISION, r2 DOUBLE PRECISION, i2 DOUBLE PRECISION)
- RETURNS TABLE(comp_real DOUBLE PRECISION, comp_imaginary DOUBLE PRECISION) AS $$
- BEGIN
- RETURN QUERY SELECT r1 * r2 - i1 * i2, r1 * i2 + i1 * r2;
- END;
- $$ LANGUAGE plpgsql;
- ----------------------------------------------------
- -- 4. Complete FFT Computation in a Stored Procedure
- ----------------------------------------------------
- -- This procedure implements the full FFT algorithm.
- -- It first reorders the input data in bit-reversed order, then performs iterative butterfly computations.
- -- Finally, the computed FFT output is stored in the FinalResults table.
- DROP PROCEDURE IF EXISTS perform_fft();
- CREATE OR REPLACE PROCEDURE perform_fft() LANGUAGE plpgsql AS $$
- DECLARE
- N INTEGER;
- total_stages INTEGER;
- stage INTEGER;
- m INTEGER;
- half_m INTEGER;
- b INTEGER;
- i INTEGER;
- idx1 INTEGER;
- idx2 INTEGER;
- r1 RECORD;
- r2 RECORD;
- twiddle_real DOUBLE PRECISION;
- twiddle_imag DOUBLE PRECISION;
- new1_real DOUBLE PRECISION;
- new1_imag DOUBLE PRECISION;
- new2_real DOUBLE PRECISION;
- new2_imag DOUBLE PRECISION;
- BEGIN
- -- Determine number of input points
- SELECT count(*) INTO N FROM InputData;
- IF N = 0 THEN
- RAISE EXCEPTION 'No input data in InputData table';
- END IF;
- -- Calculate total stages: log2(N)
- total_stages := ceil(log(2, N))::integer;
- -- Create a temporary table to hold FFT intermediate results in bit-reversed order.
- DROP TABLE IF EXISTS fft_result;
- CREATE TEMP TABLE fft_result (
- pos INTEGER PRIMARY KEY,
- real DOUBLE PRECISION,
- imaginary DOUBLE PRECISION
- );
- -- Insert the input data reordered by bit-reversed index.
- INSERT INTO fft_result (pos, real, imaginary)
- SELECT bit_reverse(id, total_stages) AS pos, real, imaginary
- FROM InputData
- ORDER BY pos;
- -- Iteratively perform the butterfly computations for each stage.
- FOR stage IN 1..total_stages LOOP
- m := CAST(power(2, stage) AS INTEGER);
- half_m := m / 2;
- -- Process each block of size m.
- FOR b IN 0..(N - 1) BY m LOOP
- -- For each pair within the block
- FOR i IN 0..(half_m - 1) LOOP
- idx1 := b + i;
- idx2 := b + i + half_m;
- -- Retrieve the two elements to be combined
- SELECT real, imaginary INTO r1 FROM fft_result WHERE pos = idx1;
- SELECT real, imaginary INTO r2 FROM fft_result WHERE pos = idx2;
- -- Compute the twiddle factor: exp(-2*pi*i/m)
- twiddle_real := cos(2 * pi() * i / m);
- twiddle_imag := - sin(2 * pi() * i / m);
- -- Compute the butterfly outputs:
- -- new1 = r1 + twiddle * r2
- new1_real := r1.real + (twiddle_real * r2.real - twiddle_imag * r2.imaginary);
- new1_imag := r1.imaginary + (twiddle_real * r2.imaginary + twiddle_imag * r2.real);
- -- new2 = r1 - twiddle * r2
- new2_real := r1.real - (twiddle_real * r2.real - twiddle_imag * r2.imaginary);
- new2_imag := r1.imaginary - (twiddle_real * r2.imaginary + twiddle_imag * r2.real);
- -- Update the fft_result table with the computed values.
- UPDATE fft_result SET real = new1_real, imaginary = new1_imag WHERE pos = idx1;
- UPDATE fft_result SET real = new2_real, imaginary = new2_imag WHERE pos = idx2;
- END LOOP;
- END LOOP;
- END LOOP;
- -- Store the final FFT result into the FinalResults table.
- DELETE FROM FinalResults;
- INSERT INTO FinalResults (id, real, imaginary)
- SELECT pos, real, imaginary FROM fft_result ORDER BY pos;
- END;
- $$;
- ---------------------------
- -- 5. Testing and Validation
- ---------------------------
- -- Call the FFT procedure to compute the FFT on InputData.
- CALL perform_fft();
- -- Display the final FFT results.
- SELECT * FROM FinalResults;
- -- Additional tests for the helper functions:
- -- Test Bit Reversal function.
- SELECT bit_reverse(1, total_stages) AS test_bit_reverse_1,
- bit_reverse(3, total_stages) AS test_bit_reverse_3,
- bit_reverse(7, total_stages) AS test_bit_reverse_7
- FROM (SELECT ceil(log(2, count(*)))::integer AS total_stages FROM InputData) t;
- -- Test Complex Addition function with explicit casts.
- SELECT * FROM complex_add(1.0::double precision, 2.0::double precision, 3.0::double precision, 4.0::double precision);
- -- Test Complex Multiplication function with explicit casts.
- SELECT * FROM complex_multiply(1.0::double precision, 2.0::double precision, 3.0::double precision, 4.0::double precision);
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement