Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import adam
- from adam.pytorch import KinDynComputations
- import numpy as np
- import torch
- model_path = "/samsung4tb/franka_description/urdfs/fr3_franka_hand.urdf"
- # joints_name_list = ["base_joint", "fr3_joint1", "fr3_joint2", "fr3_joint3", "fr3_joint4", "fr3_joint5", "fr3_joint6", "fr3_joint7", "fr3_joint8", "fr3_hand_joint", "fr3_hand_tcp_joint", "fr3_finger_joint1", "fr3_finger_joint2"]
- joints_name_list = ["fr3_joint1", "fr3_joint2", "fr3_joint3", "fr3_joint4", "fr3_joint5", "fr3_joint6", "fr3_joint7"]
- kinDyn = KinDynComputations(model_path, joints_name_list, root_link="base")
- # you need to set it manually like this to work
- kinDyn.rbdalgos.root_link= "fr3_hand"
- # kinDyn = KinDynComputations(model_path, joints_name_list, root_link="fr3_hand")
- camera_calib_home = torch.Tensor(
- [-0.19587807, 0.12579048, 0.72064054, -2.2718847 , 0.427838 ,
- 1.7621214 , -1.662231]
- )
- out1 = kinDyn.forward_kinematics('fr3_hand', np.eye(4), camera_calib_home)
- out2 = kinDyn.forward_kinematics('fr3_hand_tcp', np.eye(4), camera_calib_home)
Add Comment
Please, Sign In to add comment