GamerBhai02

ML Exp 3

Sep 22nd, 2025
120
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.01 KB | Source Code | 0 0
  1. import pandas as pd
  2. import numpy as np
  3. from sklearn.model_selection import train_test_split
  4. from sklearn.preprocessing import StandardScaler
  5. from sklearn.linear_model import LinearRegression
  6. from sklearn.metrics import mean_absolute_error, mean_squared_error
  7.  
  8. df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/scikit-learn-videos/master/data/Advertising.csv")
  9. df = df.iloc[:, 1:]
  10. #display(df)
  11.  
  12. X = df[['TV','Radio','Newspaper']]
  13. y = df['Sales']
  14.  
  15. X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
  16.  
  17. scaler = StandardScaler()
  18. X_train_scaled = scaler.fit_transform(X_train)
  19. X_test_scaled = scaler.transform(X_test)
  20.  
  21. mlr = LinearRegression()
  22. mlr.fit(X_train_scaled, y_train)
  23. y_pred = mlr.predict(X_test_scaled)
  24.  
  25. mae = mean_absolute_error(y_test, y_pred)
  26. mse = mean_squared_error(y_test, y_pred)
  27. rmse = np.sqrt(mse)
  28.  
  29. print(f"Mean Absolute Error (MAE): {mae:.3f}")
  30. print(f"Mean Squared Error (MSE): {mse:.3f}")
  31. print(f"Root Mean Squared Error (RMSE): {rmse:.3f}")
Tags: ML
Advertisement
Add Comment
Please, Sign In to add comment