Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- import numpy as np
- from sklearn.model_selection import train_test_split
- from sklearn.preprocessing import StandardScaler
- from sklearn.linear_model import LinearRegression
- from sklearn.metrics import mean_absolute_error, mean_squared_error
- df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/scikit-learn-videos/master/data/Advertising.csv")
- df = df.iloc[:, 1:]
- #display(df)
- X = df[['TV','Radio','Newspaper']]
- y = df['Sales']
- X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
- scaler = StandardScaler()
- X_train_scaled = scaler.fit_transform(X_train)
- X_test_scaled = scaler.transform(X_test)
- mlr = LinearRegression()
- mlr.fit(X_train_scaled, y_train)
- y_pred = mlr.predict(X_test_scaled)
- mae = mean_absolute_error(y_test, y_pred)
- mse = mean_squared_error(y_test, y_pred)
- rmse = np.sqrt(mse)
- print(f"Mean Absolute Error (MAE): {mae:.3f}")
- print(f"Mean Squared Error (MSE): {mse:.3f}")
- print(f"Root Mean Squared Error (RMSE): {rmse:.3f}")
Advertisement
Add Comment
Please, Sign In to add comment