Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- #train
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- training_size = 265
- img_size = 400*400
- training_data = np.empty(shape=(training_size,img_size ))
- import glob
- i = 0
- for filename in glob.glob('D:/TensorPalms/Train/*.jpg'):
- image = misc.imread(filename)
- print(image.shape)
- training_data[i] = image.reshape(-1)
- #training_data[i] = image
- i+=1
- #label
- a= [0,0,0,0,0,
- 1,1,1,1,1,
- 2,2,2,2,2,
- 3,3,3,3,3,
- 4,4,4,4,4,
- 5,5,5,5,5,
- 6,6,6,6,6,
- 7,7,7,7,7,
- 8,8,8,8,8,
- 9,9,9,9,9,
- 10,10,10,10,10,
- 11,11,11,11,11,
- 12,12,12,12,12,
- 13,13,13,13,13,
- 14,14,14,14,14,
- 15,15,15,15,15,
- 16,16,16,16,16,
- 17,17,17,17,17,
- 18,18,18,18,18,
- 19,19,19,19,19,
- 20,20,20,20,20,
- 21,21,21,21,21,
- 22,22,22,22,22,
- 23,23,23,23,23,
- 24,24,24,24,24,
- 25,25,25,25,25,
- 26,26,26,26,26,
- 27,27,27,27,27,
- 28,28,28,28,28,
- 29,29,29,29,29,
- 30,30,30,30,30,
- 31,31,31,31,31,
- 32,32,32,32,32,
- 33,33,33,33,33,
- 34,34,34,34,34,
- 35,35,35,35,35,
- 36,36,36,36,36,
- 37,37,37,37,37,
- 38,38,38,38,38,
- 39,39,39,39,39,
- 40,40,40,40,40,
- 41,41,41,41,41,
- 42,42,42,42,42,
- 43,43,43,43,43,
- 44,44,44,44,44,
- 45,45,45,45,45,
- 46,46,46,46,46,
- 47,47,47,47,47,
- 48,48,48,48,48,
- 49,49,49,49,49,
- 50,50,50,50,50,
- 51,51,51,51,51,
- 52,52,52,52,52,]
- b = tf.one_hot(a,53)
- sess = tf.Session()
- sess.run(b)
- print(b.shape)
- from sklearn.preprocessing import OneHotEncoder
- training_label = OneHotEncoder(sparse=False).fit_transform(np.asarray(a).reshape(-1, 1))
- print(training_label)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement