mitkonikov

URG - K2

Jun 1st, 2023
45
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.40 KB | None | 0 0
  1. ## Kolokvij
  2.  
  3. ### Delaunay Triangulation
  4.  
  5. - Gift Wrapping
  6. - Incremental Algorithms
  7. - Big Triangle
  8. - In what triangle is the point?
  9. - GKS - Guibas, Knuth and Sharir
  10. - Hierarchial Structure
  11. - DAG
  12. - Randomization + A* star walking
  13. - Divide & Conquer
  14. - De Wall
  15. - Sweep Line
  16. - Auxiliary Line
  17. - Advancing Front
  18. - High Dimensional Embedding
  19. - z = x^2 + y^2
  20. - Convex Hull
  21. - Project
  22.  
  23. > N - points
  24. > K - points on the Convex Hull
  25. > |Triangles| = 2*N - 2 - K
  26. > |Edges| = 3*N - 3 - K
  27. > Delaunay Triangulation can have at most 2*n - 5 triangles
  28. > Thales Theorem to prove edge flips
  29. > Legal Triangulation <=> Delaunay Triangulation
  30. > Legal Triangulation is UNIQUE
  31. > In non general position, not every Delaunay Triangulation is Angle Optimal
  32. > The Euclidean minimum spanning tree is a subset of Delaunay edges.
  33.  
  34. ### Voronoi Diagram
  35.  
  36. Definition: Voronoi Cell of point[i] is the polygon represented by the intersection of
  37. halfplanes constructed by the bisectors of point[i] and point[j] for every other `j` except `i`.
  38.  
  39. - Naive Method
  40. O(n * n^2)
  41. for each point O(n)
  42. get all bisectors O(n)
  43. for i in bisectors
  44. for j in bisectors
  45. get intersection point
  46. constructing a cell
  47.  
  48. - Incremental Method
  49. - Divide and Conquer
  50. - Sweep line
  51.  
  52. > Voronoi Cells are Convex
  53.  
  54.  
  55. ### Angle Optimal Triangulations
  56.  
  57. - Angle Vector = (a_1, a_2, a_3 ...)
  58. - Optimal = lexicographically largest
  59. - Local edge flips improve the optimal angle triangulation
  60.  
  61. ### Polygons
  62.  
  63. Classification of polygons:
  64. - simple
  65. - no intersections of edges
  66. - each vertex has exactly 2 edges
  67. - not-simple
  68.  
  69. - convex
  70. - non-convex
  71.  
  72. - monotonic
  73. - non-monotonic
  74.  
  75. > Monotonic Chain
  76. > Holes on the odd and even levels are oriented differently
  77.  
  78. Algorithms for checking if a point is inside a polygon
  79.  
  80. Without preprocessing:
  81. - Sign method (convex) O(N)
  82. - all signs of cross products have to be equal
  83. - Halftrack method (metoda poltraka) O(N)
  84. -
  85. - Vsota kotov O(N)
  86. - 360 deg - inside
  87. - 0 deg - outside
  88. - KKS Method O(N)
  89. - per query
  90.  
  91. With preprocessing:
  92. - Metoda s klini (convex)
  93. - preprocessing: O(N log N)
  94. - query: O(log N)
  95. - Binary search on which radar sector is the point located
  96. - Test if the point is inside or outside
Advertisement
Add Comment
Please, Sign In to add comment