Advertisement
khaiwen1111

roc logreg

Apr 19th, 2020
336
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.91 KB | None | 0 0
  1. from sklearn.metrics import roc_curve, auc
  2. C=np.linspace(1,100,10).tolist()
  3. train_results = []
  4. test_results = []
  5. for i in C:
  6.     clf = LogisticRegression(C=i)
  7.     clf.fit(tfX_train, y_train)
  8.     train_pred = clf.predict(tfX_train)
  9.     false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred)
  10.     roc_auc = auc(false_positive_rate, true_positive_rate)
  11.     train_results.append(roc_auc)
  12.     y_pred = clf.predict(tfX_test)
  13.     false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
  14.     roc_auc = auc(false_positive_rate, true_positive_rate)
  15.     test_results.append(roc_auc)
  16. from matplotlib.legend_handler import HandlerLine2D
  17. line1, = plt.plot(C, train_results,"b", label="Train AUC")
  18. line2, = plt.plot(C, test_results, "r", label="Test AUC")
  19. plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})
  20. plt.ylabel("AUC score")
  21. plt.xlabel("C")
  22. plt.grid(True)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement