MatsGranvik

zero of a polynomial is on the critical circle instead of critical line

Oct 20th, 2022
156
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.75 KB | None | 0 0
  1. (*Mathematica 8 start*)
  2. a[n_] := Total[MoebiusMu[Divisors[n]]*Divisors[n]]
  3. nn = 3*4*4;
  4. log = Table[Sum[If[n == 1, 0, a[GCD[n, k]]/k], {k, 1, 6}], {n, 1, nn}]
  5. n = nn;(*Increase n=500 for better precision*)
  6. $MaxRootDegree = Round[Log[n]*n] + 1;
  7. Monitor[z =
  8. Table[(x /.
  9. NSolve[Sum[(-1)^(k + 1)*x^Round[log[[k]]*n], {k, 1, n}] == 0,
  10. x])[[m]], {m, 1, nn}];, n]
  11. ListPlot[Chop[
  12. Table[{Re[-nn*Log[z[[n]]]], Im[-4/Pi*Log[z[[n]]]]}, {n, 1,
  13. Length[z]}]]]
  14. ListPlot[Chop[Table[{Re[z[[n]]], Im[z[[n]]]}, {n, 1, Length[z]}]],
  15. AspectRatio -> 4]
  16. (*end*)
  17.  
  18. Is it any easier to determine if a zero of a polynomial is on the critical circle instead of a Riemann zeta zero on the critical line?
  19. https://math.stackexchange.com/q/4297761/8530
Advertisement
Add Comment
Please, Sign In to add comment