Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import pandas as pd
- import tensorflow as tf
- tf.enable_eager_execution()
- N_FEATURES = 10
- N_SAMPLES = 100
- N_OUTPUTS = 2
- BATCH_SIZE = 8
- EPOCHS = 5
- # prepare fake data
- train_x = pd.DataFrame(np.random.rand(N_SAMPLES, N_FEATURES))
- train_x.to_csv('train_x.csv', index=False)
- train_y = pd.DataFrame(np.random.rand(N_SAMPLES, N_OUTPUTS))
- train_y.to_csv('train_y.csv', index=False)
- def create_model():
- model = tf.keras.models.Sequential([
- tf.keras.layers.Dense(N_OUTPUTS, input_shape=(N_FEATURES,)),
- tf.keras.layers.Activation('linear'),
- ])
- model.compile('sgd', 'mse')
- return model
- train_x = tf.data.experimental.CsvDataset('train_x.csv', [tf.float32] * N_FEATURES, header=True)
- train_y = tf.data.experimental.CsvDataset('train_y.csv', [tf.float32] * N_OUTPUTS, header=True)
- dataset = tf.data.Dataset.zip((train_x, train_y))
- dataset = dataset.batch(BATCH_SIZE)
- dataset = dataset.repeat(EPOCHS)
- model = create_model()
- model.fit(dataset, steps_per_epoch=N_SAMPLES/BATCH_SIZE, epochs=EPOCHS)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement