Advertisement
Guest User

Untitled

a guest
Feb 24th, 2019
477
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.05 KB | None | 0 0
  1. import numpy as np
  2. import pandas as pd
  3. import tensorflow as tf
  4.  
  5. tf.enable_eager_execution()
  6.  
  7. N_FEATURES = 10
  8. N_SAMPLES = 100
  9. N_OUTPUTS = 2
  10. BATCH_SIZE = 8
  11. EPOCHS = 5
  12.  
  13. # prepare fake data
  14. train_x = pd.DataFrame(np.random.rand(N_SAMPLES, N_FEATURES))
  15. train_x.to_csv('train_x.csv', index=False)
  16. train_y = pd.DataFrame(np.random.rand(N_SAMPLES, N_OUTPUTS))
  17. train_y.to_csv('train_y.csv', index=False)
  18.  
  19. def create_model():
  20.     model = tf.keras.models.Sequential([
  21.         tf.keras.layers.Dense(N_OUTPUTS, input_shape=(N_FEATURES,)),
  22.         tf.keras.layers.Activation('linear'),
  23.     ])
  24.     model.compile('sgd', 'mse')
  25.  
  26.     return model
  27.  
  28. train_x = tf.data.experimental.CsvDataset('train_x.csv', [tf.float32] * N_FEATURES, header=True)
  29. train_y = tf.data.experimental.CsvDataset('train_y.csv', [tf.float32] * N_OUTPUTS, header=True)
  30. dataset = tf.data.Dataset.zip((train_x, train_y))
  31. dataset = dataset.batch(BATCH_SIZE)
  32. dataset = dataset.repeat(EPOCHS)
  33.  
  34. model = create_model()
  35. model.fit(dataset, steps_per_epoch=N_SAMPLES/BATCH_SIZE, epochs=EPOCHS)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement