Advertisement
Guest User

Untitled

a guest
Jul 24th, 2018
75
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 31.53 KB | None | 0 0
  1. ActivePython 2.7.2.5 (ActiveState Software Inc.) based on
  2. Python 2.7.2 (default, Jun 24 2011, 12:22:14) [MSC v.1500 64 bit (AMD64)] on win32
  3. Type "copyright", "credits" or "license()" for more information.
  4. >>> ================================ RESTART ================================
  5. >>>
  6. H
  7. [[ 0.70710678 0.70710678]
  8. [ 0.70710678 -0.70710678]]
  9.  
  10. T
  11. [[ 1.00000000+0.j 0.00000000+0.j ]
  12. [ 0.00000000+0.j 0.70710678+0.70710678j]]
  13.  
  14. zero
  15. [[ 1.]
  16. [ 0.]]
  17.  
  18. #####################################
  19. #####################################
  20. #####################################
  21.  
  22. Matrix configuration (0=H, 1=T)
  23. 0000000
  24.  
  25. Count
  26. 0
  27.  
  28. Final state
  29. [[ 0.70710678]
  30. [ 0.70710678]]
  31.  
  32. Probabilities of |0> and |1> states
  33. [ 0.5]
  34. [ 0.5]
  35.  
  36. Unitarity check
  37. 1.0
  38. #################################
  39.  
  40. Matrix configuration (0=H, 1=T)
  41. 0000001
  42.  
  43. Count
  44. 1
  45.  
  46. Final state
  47. [[ 1.+0.j]
  48. [ 0.+0.j]]
  49.  
  50. Probabilities of |0> and |1> states
  51. [ 1.]
  52. [ 0.]
  53.  
  54. Unitarity check
  55. 1.0
  56. #################################
  57.  
  58. Matrix configuration (0=H, 1=T)
  59. 0000010
  60.  
  61. Count
  62. 2
  63.  
  64. Final state
  65. [[ 0.85355339+0.35355339j]
  66. [ 0.14644661-0.35355339j]]
  67.  
  68. Probabilities of |0> and |1> states
  69. [ 0.85355339]
  70. [ 0.14644661]
  71.  
  72. Unitarity check
  73. 1.0
  74. #################################
  75.  
  76. Matrix configuration (0=H, 1=T)
  77. 0000011
  78.  
  79. Count
  80. 3
  81.  
  82. Final state
  83. [[ 0.70710678+0.j ]
  84. [ 0.00000000+0.70710678j]]
  85.  
  86. Probabilities of |0> and |1> states
  87. [ 0.5]
  88. [ 0.5]
  89.  
  90. Unitarity check
  91. 1.0
  92. #################################
  93.  
  94. Matrix configuration (0=H, 1=T)
  95. 0000100
  96.  
  97. Count
  98. 4
  99.  
  100. Final state
  101. [[ 1.+0.j]
  102. [ 0.+0.j]]
  103.  
  104. Probabilities of |0> and |1> states
  105. [ 1.]
  106. [ 0.]
  107.  
  108. Unitarity check
  109. 1.0
  110. #################################
  111.  
  112. Matrix configuration (0=H, 1=T)
  113. 0000101
  114.  
  115. Count
  116. 5
  117.  
  118. Final state
  119. [[ 0.70710678+0.j ]
  120. [ 0.50000000+0.5j]]
  121.  
  122. Probabilities of |0> and |1> states
  123. [ 0.5]
  124. [ 0.5]
  125.  
  126. Unitarity check
  127. 1.0
  128. #################################
  129.  
  130. Matrix configuration (0=H, 1=T)
  131. 0000110
  132.  
  133. Count
  134. 6
  135.  
  136. Final state
  137. [[ 0.70710678+0.j]
  138. [ 0.70710678+0.j]]
  139.  
  140. Probabilities of |0> and |1> states
  141. [ 0.5]
  142. [ 0.5]
  143.  
  144. Unitarity check
  145. 1.0
  146. #################################
  147.  
  148. Matrix configuration (0=H, 1=T)
  149. 0000111
  150.  
  151. Count
  152. 7
  153.  
  154. Final state
  155. [[ 1.+0.j]
  156. [ 0.+0.j]]
  157.  
  158. Probabilities of |0> and |1> states
  159. [ 1.]
  160. [ 0.]
  161.  
  162. Unitarity check
  163. 1.0
  164. #################################
  165.  
  166. Matrix configuration (0=H, 1=T)
  167. 0001000
  168.  
  169. Count
  170. 8
  171.  
  172. Final state
  173. [[ 0.85355339+0.35355339j]
  174. [ 0.14644661-0.35355339j]]
  175.  
  176. Probabilities of |0> and |1> states
  177. [ 0.85355339]
  178. [ 0.14644661]
  179.  
  180. Unitarity check
  181. 1.0
  182. #################################
  183.  
  184. Matrix configuration (0=H, 1=T)
  185. 0001001
  186.  
  187. Count
  188. 9
  189.  
  190. Final state
  191. [[ 0.70710678+0.j ]
  192. [ 0.00000000+0.70710678j]]
  193.  
  194. Probabilities of |0> and |1> states
  195. [ 0.5]
  196. [ 0.5]
  197.  
  198. Unitarity check
  199. 1.0
  200. #################################
  201.  
  202. Matrix configuration (0=H, 1=T)
  203. 0001010
  204.  
  205. Count
  206. 10
  207.  
  208. Final state
  209. [[ 0.85355339+0.14644661j]
  210. [ 0.35355339+0.35355339j]]
  211.  
  212. Probabilities of |0> and |1> states
  213. [ 0.75]
  214. [ 0.25]
  215.  
  216. Unitarity check
  217. 1.0
  218. #################################
  219.  
  220. Matrix configuration (0=H, 1=T)
  221. 0001011
  222.  
  223. Count
  224. 11
  225.  
  226. Final state
  227. [[ 0.85355339+0.35355339j]
  228. [ 0.35355339+0.14644661j]]
  229.  
  230. Probabilities of |0> and |1> states
  231. [ 0.85355339]
  232. [ 0.14644661]
  233.  
  234. Unitarity check
  235. 1.0
  236. #################################
  237.  
  238. Matrix configuration (0=H, 1=T)
  239. 0001100
  240.  
  241. Count
  242. 12
  243.  
  244. Final state
  245. [[ 0.70710678+0.j ]
  246. [ 0.00000000+0.70710678j]]
  247.  
  248. Probabilities of |0> and |1> states
  249. [ 0.5]
  250. [ 0.5]
  251.  
  252. Unitarity check
  253. 1.0
  254. #################################
  255.  
  256. Matrix configuration (0=H, 1=T)
  257. 0001101
  258.  
  259. Count
  260. 13
  261.  
  262. Final state
  263. [[ 0.50000000 +5.00000000e-01j]
  264. [ 0.70710678 +1.11022302e-16j]]
  265.  
  266. Probabilities of |0> and |1> states
  267. [ 0.5]
  268. [ 0.5]
  269.  
  270. Unitarity check
  271. 1.0
  272. #################################
  273.  
  274. Matrix configuration (0=H, 1=T)
  275. 0001110
  276.  
  277. Count
  278. 14
  279.  
  280. Final state
  281. [[ 0.14644661+0.35355339j]
  282. [ 0.85355339-0.35355339j]]
  283.  
  284. Probabilities of |0> and |1> states
  285. [ 0.14644661]
  286. [ 0.85355339]
  287.  
  288. Unitarity check
  289. 1.0
  290. #################################
  291.  
  292. Matrix configuration (0=H, 1=T)
  293. 0001111
  294.  
  295. Count
  296. 15
  297.  
  298. Final state
  299. [[ 0.70710678+0.j]
  300. [-0.70710678+0.j]]
  301.  
  302. Probabilities of |0> and |1> states
  303. [ 0.5]
  304. [ 0.5]
  305.  
  306. Unitarity check
  307. 1.0
  308. #################################
  309.  
  310. Matrix configuration (0=H, 1=T)
  311. 0010000
  312.  
  313. Count
  314. 16
  315.  
  316. Final state
  317. [[ 1.+0.j]
  318. [ 0.+0.j]]
  319.  
  320. Probabilities of |0> and |1> states
  321. [ 1.]
  322. [ 0.]
  323.  
  324. Unitarity check
  325. 1.0
  326. #################################
  327.  
  328. Matrix configuration (0=H, 1=T)
  329. 0010001
  330.  
  331. Count
  332. 17
  333.  
  334. Final state
  335. [[ 0.70710678+0.j ]
  336. [ 0.50000000+0.5j]]
  337.  
  338. Probabilities of |0> and |1> states
  339. [ 0.5]
  340. [ 0.5]
  341.  
  342. Unitarity check
  343. 1.0
  344. #################################
  345.  
  346. Matrix configuration (0=H, 1=T)
  347. 0010010
  348.  
  349. Count
  350. 18
  351.  
  352. Final state
  353. [[ 0.70710678+0.j]
  354. [ 0.70710678+0.j]]
  355.  
  356. Probabilities of |0> and |1> states
  357. [ 0.5]
  358. [ 0.5]
  359.  
  360. Unitarity check
  361. 1.0
  362. #################################
  363.  
  364. Matrix configuration (0=H, 1=T)
  365. 0010011
  366.  
  367. Count
  368. 19
  369.  
  370. Final state
  371. [[ 1.+0.j]
  372. [ 0.+0.j]]
  373.  
  374. Probabilities of |0> and |1> states
  375. [ 1.]
  376. [ 0.]
  377.  
  378. Unitarity check
  379. 1.0
  380. #################################
  381.  
  382. Matrix configuration (0=H, 1=T)
  383. 0010100
  384.  
  385. Count
  386. 20
  387.  
  388. Final state
  389. [[ 0.70710678+0.j ]
  390. [ 0.50000000+0.5j]]
  391.  
  392. Probabilities of |0> and |1> states
  393. [ 0.5]
  394. [ 0.5]
  395.  
  396. Unitarity check
  397. 1.0
  398. #################################
  399.  
  400. Matrix configuration (0=H, 1=T)
  401. 0010101
  402.  
  403. Count
  404. 21
  405.  
  406. Final state
  407. [[ 0.85355339+0.35355339j]
  408. [ 0.35355339-0.14644661j]]
  409.  
  410. Probabilities of |0> and |1> states
  411. [ 0.85355339]
  412. [ 0.14644661]
  413.  
  414. Unitarity check
  415. 1.0
  416. #################################
  417.  
  418. Matrix configuration (0=H, 1=T)
  419. 0010110
  420.  
  421. Count
  422. 22
  423.  
  424. Final state
  425. [[ 0.5+0.5j]
  426. [ 0.5-0.5j]]
  427.  
  428. Probabilities of |0> and |1> states
  429. [ 0.5]
  430. [ 0.5]
  431.  
  432. Unitarity check
  433. 1.0
  434. #################################
  435.  
  436. Matrix configuration (0=H, 1=T)
  437. 0010111
  438.  
  439. Count
  440. 23
  441.  
  442. Final state
  443. [[ 0.70710678+0.j ]
  444. [-0.50000000+0.5j]]
  445.  
  446. Probabilities of |0> and |1> states
  447. [ 0.5]
  448. [ 0.5]
  449.  
  450. Unitarity check
  451. 1.0
  452. #################################
  453.  
  454. Matrix configuration (0=H, 1=T)
  455. 0011000
  456.  
  457. Count
  458. 24
  459.  
  460. Final state
  461. [[ 0.70710678+0.j]
  462. [ 0.70710678+0.j]]
  463.  
  464. Probabilities of |0> and |1> states
  465. [ 0.5]
  466. [ 0.5]
  467.  
  468. Unitarity check
  469. 1.0
  470. #################################
  471.  
  472. Matrix configuration (0=H, 1=T)
  473. 0011001
  474.  
  475. Count
  476. 25
  477.  
  478. Final state
  479. [[ 1.+0.j]
  480. [ 0.+0.j]]
  481.  
  482. Probabilities of |0> and |1> states
  483. [ 1.]
  484. [ 0.]
  485.  
  486. Unitarity check
  487. 1.0
  488. #################################
  489.  
  490. Matrix configuration (0=H, 1=T)
  491. 0011010
  492.  
  493. Count
  494. 26
  495.  
  496. Final state
  497. [[ 0.85355339+0.35355339j]
  498. [ 0.14644661-0.35355339j]]
  499.  
  500. Probabilities of |0> and |1> states
  501. [ 0.85355339]
  502. [ 0.14644661]
  503.  
  504. Unitarity check
  505. 1.0
  506. #################################
  507.  
  508. Matrix configuration (0=H, 1=T)
  509. 0011011
  510.  
  511. Count
  512. 27
  513.  
  514. Final state
  515. [[ 0.70710678+0.j ]
  516. [ 0.00000000+0.70710678j]]
  517.  
  518. Probabilities of |0> and |1> states
  519. [ 0.5]
  520. [ 0.5]
  521.  
  522. Unitarity check
  523. 1.0
  524. #################################
  525.  
  526. Matrix configuration (0=H, 1=T)
  527. 0011100
  528.  
  529. Count
  530. 28
  531.  
  532. Final state
  533. [[ 1.+0.j]
  534. [ 0.+0.j]]
  535.  
  536. Probabilities of |0> and |1> states
  537. [ 1.]
  538. [ 0.]
  539.  
  540. Unitarity check
  541. 1.0
  542. #################################
  543.  
  544. Matrix configuration (0=H, 1=T)
  545. 0011101
  546.  
  547. Count
  548. 29
  549.  
  550. Final state
  551. [[ 0.70710678+0.j ]
  552. [ 0.50000000+0.5j]]
  553.  
  554. Probabilities of |0> and |1> states
  555. [ 0.5]
  556. [ 0.5]
  557.  
  558. Unitarity check
  559. 1.0
  560. #################################
  561.  
  562. Matrix configuration (0=H, 1=T)
  563. 0011110
  564.  
  565. Count
  566. 30
  567.  
  568. Final state
  569. [[ 0.70710678+0.j]
  570. [ 0.70710678+0.j]]
  571.  
  572. Probabilities of |0> and |1> states
  573. [ 0.5]
  574. [ 0.5]
  575.  
  576. Unitarity check
  577. 1.0
  578. #################################
  579.  
  580. Matrix configuration (0=H, 1=T)
  581. 0011111
  582.  
  583. Count
  584. 31
  585.  
  586. Final state
  587. [[ 1.+0.j]
  588. [ 0.+0.j]]
  589.  
  590. Probabilities of |0> and |1> states
  591. [ 1.]
  592. [ 0.]
  593.  
  594. Unitarity check
  595. 1.0
  596. #################################
  597.  
  598. Matrix configuration (0=H, 1=T)
  599. 0100000
  600.  
  601. Count
  602. 32
  603.  
  604. Final state
  605. [[ 0.85355339+0.35355339j]
  606. [ 0.14644661-0.35355339j]]
  607.  
  608. Probabilities of |0> and |1> states
  609. [ 0.85355339]
  610. [ 0.14644661]
  611.  
  612. Unitarity check
  613. 1.0
  614. #################################
  615.  
  616. Matrix configuration (0=H, 1=T)
  617. 0100001
  618.  
  619. Count
  620. 33
  621.  
  622. Final state
  623. [[ 0.70710678+0.j ]
  624. [ 0.00000000+0.70710678j]]
  625.  
  626. Probabilities of |0> and |1> states
  627. [ 0.5]
  628. [ 0.5]
  629.  
  630. Unitarity check
  631. 1.0
  632. #################################
  633.  
  634. Matrix configuration (0=H, 1=T)
  635. 0100010
  636.  
  637. Count
  638. 34
  639.  
  640. Final state
  641. [[ 0.85355339+0.14644661j]
  642. [ 0.35355339+0.35355339j]]
  643.  
  644. Probabilities of |0> and |1> states
  645. [ 0.75]
  646. [ 0.25]
  647.  
  648. Unitarity check
  649. 1.0
  650. #################################
  651.  
  652. Matrix configuration (0=H, 1=T)
  653. 0100011
  654.  
  655. Count
  656. 35
  657.  
  658. Final state
  659. [[ 0.85355339+0.35355339j]
  660. [ 0.35355339+0.14644661j]]
  661.  
  662. Probabilities of |0> and |1> states
  663. [ 0.85355339]
  664. [ 0.14644661]
  665.  
  666. Unitarity check
  667. 1.0
  668. #################################
  669.  
  670. Matrix configuration (0=H, 1=T)
  671. 0100100
  672.  
  673. Count
  674. 36
  675.  
  676. Final state
  677. [[ 0.70710678+0.j ]
  678. [ 0.00000000+0.70710678j]]
  679.  
  680. Probabilities of |0> and |1> states
  681. [ 0.5]
  682. [ 0.5]
  683.  
  684. Unitarity check
  685. 1.0
  686. #################################
  687.  
  688. Matrix configuration (0=H, 1=T)
  689. 0100101
  690.  
  691. Count
  692. 37
  693.  
  694. Final state
  695. [[ 0.50000000+0.5j]
  696. [ 0.70710678+0.j ]]
  697.  
  698. Probabilities of |0> and |1> states
  699. [ 0.5]
  700. [ 0.5]
  701.  
  702. Unitarity check
  703. 1.0
  704. #################################
  705.  
  706. Matrix configuration (0=H, 1=T)
  707. 0100110
  708.  
  709. Count
  710. 38
  711.  
  712. Final state
  713. [[ 0.14644661+0.35355339j]
  714. [ 0.85355339-0.35355339j]]
  715.  
  716. Probabilities of |0> and |1> states
  717. [ 0.14644661]
  718. [ 0.85355339]
  719.  
  720. Unitarity check
  721. 1.0
  722. #################################
  723.  
  724. Matrix configuration (0=H, 1=T)
  725. 0100111
  726.  
  727. Count
  728. 39
  729.  
  730. Final state
  731. [[ 0.70710678+0.j]
  732. [-0.70710678+0.j]]
  733.  
  734. Probabilities of |0> and |1> states
  735. [ 0.5]
  736. [ 0.5]
  737.  
  738. Unitarity check
  739. 1.0
  740. #################################
  741.  
  742. Matrix configuration (0=H, 1=T)
  743. 0101000
  744.  
  745. Count
  746. 40
  747.  
  748. Final state
  749. [[ 0.85355339+0.14644661j]
  750. [ 0.35355339+0.35355339j]]
  751.  
  752. Probabilities of |0> and |1> states
  753. [ 0.75]
  754. [ 0.25]
  755.  
  756. Unitarity check
  757. 1.0
  758. #################################
  759.  
  760. Matrix configuration (0=H, 1=T)
  761. 0101001
  762.  
  763. Count
  764. 41
  765.  
  766. Final state
  767. [[ 0.85355339+0.35355339j]
  768. [ 0.35355339+0.14644661j]]
  769.  
  770. Probabilities of |0> and |1> states
  771. [ 0.85355339]
  772. [ 0.14644661]
  773.  
  774. Unitarity check
  775. 1.0
  776. #################################
  777.  
  778. Matrix configuration (0=H, 1=T)
  779. 0101010
  780.  
  781. Count
  782. 42
  783.  
  784. Final state
  785. [[ 0.60355339+0.45710678j]
  786. [ 0.60355339-0.25j ]]
  787.  
  788. Probabilities of |0> and |1> states
  789. [ 0.5732233]
  790. [ 0.4267767]
  791.  
  792. Unitarity check
  793. 1.0
  794. #################################
  795.  
  796. Matrix configuration (0=H, 1=T)
  797. 0101011
  798.  
  799. Count
  800. 43
  801.  
  802. Final state
  803. [[ 0.85355339+0.14644661j]
  804. [-0.35355339+0.35355339j]]
  805.  
  806. Probabilities of |0> and |1> states
  807. [ 0.75]
  808. [ 0.25]
  809.  
  810. Unitarity check
  811. 1.0
  812. #################################
  813.  
  814. Matrix configuration (0=H, 1=T)
  815. 0101100
  816.  
  817. Count
  818. 44
  819.  
  820. Final state
  821. [[ 0.85355339+0.35355339j]
  822. [ 0.35355339+0.14644661j]]
  823.  
  824. Probabilities of |0> and |1> states
  825. [ 0.85355339]
  826. [ 0.14644661]
  827.  
  828. Unitarity check
  829. 1.0
  830. #################################
  831.  
  832. Matrix configuration (0=H, 1=T)
  833. 0101101
  834.  
  835. Count
  836. 45
  837.  
  838. Final state
  839. [[ 0.85355339+0.35355339j]
  840. [ 0.14644661+0.35355339j]]
  841.  
  842. Probabilities of |0> and |1> states
  843. [ 0.85355339]
  844. [ 0.14644661]
  845.  
  846. Unitarity check
  847. 1.0
  848. #################################
  849.  
  850. Matrix configuration (0=H, 1=T)
  851. 0101110
  852.  
  853. Count
  854. 46
  855.  
  856. Final state
  857. [[ 0.70710678 +5.00000000e-01j]
  858. [ 0.50000000 +2.77555756e-17j]]
  859.  
  860. Probabilities of |0> and |1> states
  861. [ 0.75]
  862. [ 0.25]
  863.  
  864. Unitarity check
  865. 1.0
  866. #################################
  867.  
  868. Matrix configuration (0=H, 1=T)
  869. 0101111
  870.  
  871. Count
  872. 47
  873.  
  874. Final state
  875. [[ 0.85355339+0.35355339j]
  876. [-0.14644661+0.35355339j]]
  877.  
  878. Probabilities of |0> and |1> states
  879. [ 0.85355339]
  880. [ 0.14644661]
  881.  
  882. Unitarity check
  883. 1.0
  884. #################################
  885.  
  886. Matrix configuration (0=H, 1=T)
  887. 0110000
  888.  
  889. Count
  890. 48
  891.  
  892. Final state
  893. [[ 0.70710678+0.j ]
  894. [ 0.00000000+0.70710678j]]
  895.  
  896. Probabilities of |0> and |1> states
  897. [ 0.5]
  898. [ 0.5]
  899.  
  900. Unitarity check
  901. 1.0
  902. #################################
  903.  
  904. Matrix configuration (0=H, 1=T)
  905. 0110001
  906.  
  907. Count
  908. 49
  909.  
  910. Final state
  911. [[ 0.50000000 +5.00000000e-01j]
  912. [ 0.70710678 +5.55111512e-17j]]
  913.  
  914. Probabilities of |0> and |1> states
  915. [ 0.5]
  916. [ 0.5]
  917.  
  918. Unitarity check
  919. 1.0
  920. #################################
  921.  
  922. Matrix configuration (0=H, 1=T)
  923. 0110010
  924.  
  925. Count
  926. 50
  927.  
  928. Final state
  929. [[ 0.14644661+0.35355339j]
  930. [ 0.85355339-0.35355339j]]
  931.  
  932. Probabilities of |0> and |1> states
  933. [ 0.14644661]
  934. [ 0.85355339]
  935.  
  936. Unitarity check
  937. 1.0
  938. #################################
  939.  
  940. Matrix configuration (0=H, 1=T)
  941. 0110011
  942.  
  943. Count
  944. 51
  945.  
  946. Final state
  947. [[ 0.70710678+0.j]
  948. [-0.70710678+0.j]]
  949.  
  950. Probabilities of |0> and |1> states
  951. [ 0.5]
  952. [ 0.5]
  953.  
  954. Unitarity check
  955. 1.0
  956. #################################
  957.  
  958. Matrix configuration (0=H, 1=T)
  959. 0110100
  960.  
  961. Count
  962. 52
  963.  
  964. Final state
  965. [[ 0.50000000 +5.00000000e-01j]
  966. [ 0.70710678 +5.55111512e-17j]]
  967.  
  968. Probabilities of |0> and |1> states
  969. [ 0.5]
  970. [ 0.5]
  971.  
  972. Unitarity check
  973. 1.0
  974. #################################
  975.  
  976. Matrix configuration (0=H, 1=T)
  977. 0110101
  978.  
  979. Count
  980. 53
  981.  
  982. Final state
  983. [[ 0.85355339+0.35355339j]
  984. [-0.35355339+0.14644661j]]
  985.  
  986. Probabilities of |0> and |1> states
  987. [ 0.85355339]
  988. [ 0.14644661]
  989.  
  990. Unitarity check
  991. 1.0
  992. #################################
  993.  
  994. Matrix configuration (0=H, 1=T)
  995. 0110110
  996.  
  997. Count
  998. 54
  999.  
  1000. Final state
  1001. [[ 7.07106781e-01+0.70710678j]
  1002. [ 1.66533454e-16+0.j ]]
  1003.  
  1004. Probabilities of |0> and |1> states
  1005. [ 1.]
  1006. [ 2.77333912e-32]
  1007.  
  1008. Unitarity check
  1009. 1.0
  1010. #################################
  1011.  
  1012. Matrix configuration (0=H, 1=T)
  1013. 0110111
  1014.  
  1015. Count
  1016. 55
  1017.  
  1018. Final state
  1019. [[ 5.00000000e-01+0.5j ]
  1020. [ -5.55111512e-17+0.70710678j]]
  1021.  
  1022. Probabilities of |0> and |1> states
  1023. [ 0.5]
  1024. [ 0.5]
  1025.  
  1026. Unitarity check
  1027. 1.0
  1028. #################################
  1029.  
  1030. Matrix configuration (0=H, 1=T)
  1031. 0111000
  1032.  
  1033. Count
  1034. 56
  1035.  
  1036. Final state
  1037. [[ 0.14644661+0.35355339j]
  1038. [ 0.85355339-0.35355339j]]
  1039.  
  1040. Probabilities of |0> and |1> states
  1041. [ 0.14644661]
  1042. [ 0.85355339]
  1043.  
  1044. Unitarity check
  1045. 1.0
  1046. #################################
  1047.  
  1048. Matrix configuration (0=H, 1=T)
  1049. 0111001
  1050.  
  1051. Count
  1052. 57
  1053.  
  1054. Final state
  1055. [[ 0.70710678+0.j]
  1056. [-0.70710678+0.j]]
  1057.  
  1058. Probabilities of |0> and |1> states
  1059. [ 0.5]
  1060. [ 0.5]
  1061.  
  1062. Unitarity check
  1063. 1.0
  1064. #################################
  1065.  
  1066. Matrix configuration (0=H, 1=T)
  1067. 0111010
  1068.  
  1069. Count
  1070. 58
  1071.  
  1072. Final state
  1073. [[ 0.70710678 +5.00000000e-01j]
  1074. [-0.50000000 -2.77555756e-17j]]
  1075.  
  1076. Probabilities of |0> and |1> states
  1077. [ 0.75]
  1078. [ 0.25]
  1079.  
  1080. Unitarity check
  1081. 1.0
  1082. #################################
  1083.  
  1084. Matrix configuration (0=H, 1=T)
  1085. 0111011
  1086.  
  1087. Count
  1088. 59
  1089.  
  1090. Final state
  1091. [[ 0.14644661+0.35355339j]
  1092. [ 0.35355339+0.85355339j]]
  1093.  
  1094. Probabilities of |0> and |1> states
  1095. [ 0.14644661]
  1096. [ 0.85355339]
  1097.  
  1098. Unitarity check
  1099. 1.0
  1100. #################################
  1101.  
  1102. Matrix configuration (0=H, 1=T)
  1103. 0111100
  1104.  
  1105. Count
  1106. 60
  1107.  
  1108. Final state
  1109. [[ 0.70710678+0.j]
  1110. [-0.70710678+0.j]]
  1111.  
  1112. Probabilities of |0> and |1> states
  1113. [ 0.5]
  1114. [ 0.5]
  1115.  
  1116. Unitarity check
  1117. 1.0
  1118. #################################
  1119.  
  1120. Matrix configuration (0=H, 1=T)
  1121. 0111101
  1122.  
  1123. Count
  1124. 61
  1125.  
  1126. Final state
  1127. [[ 1.11022302e-16+0.j ]
  1128. [ 7.07106781e-01+0.70710678j]]
  1129.  
  1130. Probabilities of |0> and |1> states
  1131. [ 1.23259516e-32]
  1132. [ 1.]
  1133.  
  1134. Unitarity check
  1135. 1.0
  1136. #################################
  1137.  
  1138. Matrix configuration (0=H, 1=T)
  1139. 0111110
  1140.  
  1141. Count
  1142. 62
  1143.  
  1144. Final state
  1145. [[ 0.14644661-0.35355339j]
  1146. [ 0.85355339+0.35355339j]]
  1147.  
  1148. Probabilities of |0> and |1> states
  1149. [ 0.14644661]
  1150. [ 0.85355339]
  1151.  
  1152. Unitarity check
  1153. 1.0
  1154. #################################
  1155.  
  1156. Matrix configuration (0=H, 1=T)
  1157. 0111111
  1158.  
  1159. Count
  1160. 63
  1161.  
  1162. Final state
  1163. [[ 0.70710678+0.j ]
  1164. [ 0.00000000-0.70710678j]]
  1165.  
  1166. Probabilities of |0> and |1> states
  1167. [ 0.5]
  1168. [ 0.5]
  1169.  
  1170. Unitarity check
  1171. 1.0
  1172. #################################
  1173.  
  1174. Matrix configuration (0=H, 1=T)
  1175. 1000000
  1176.  
  1177. Count
  1178. 64
  1179.  
  1180. Final state
  1181. [[ 1.+0.j]
  1182. [ 0.+0.j]]
  1183.  
  1184. Probabilities of |0> and |1> states
  1185. [ 1.]
  1186. [ 0.]
  1187.  
  1188. Unitarity check
  1189. 1.0
  1190. #################################
  1191.  
  1192. Matrix configuration (0=H, 1=T)
  1193. 1000001
  1194.  
  1195. Count
  1196. 65
  1197.  
  1198. Final state
  1199. [[ 0.70710678+0.j ]
  1200. [ 0.50000000+0.5j]]
  1201.  
  1202. Probabilities of |0> and |1> states
  1203. [ 0.5]
  1204. [ 0.5]
  1205.  
  1206. Unitarity check
  1207. 1.0
  1208. #################################
  1209.  
  1210. Matrix configuration (0=H, 1=T)
  1211. 1000010
  1212.  
  1213. Count
  1214. 66
  1215.  
  1216. Final state
  1217. [[ 0.70710678+0.j]
  1218. [ 0.70710678+0.j]]
  1219.  
  1220. Probabilities of |0> and |1> states
  1221. [ 0.5]
  1222. [ 0.5]
  1223.  
  1224. Unitarity check
  1225. 1.0
  1226. #################################
  1227.  
  1228. Matrix configuration (0=H, 1=T)
  1229. 1000011
  1230.  
  1231. Count
  1232. 67
  1233.  
  1234. Final state
  1235. [[ 1.+0.j]
  1236. [ 0.+0.j]]
  1237.  
  1238. Probabilities of |0> and |1> states
  1239. [ 1.]
  1240. [ 0.]
  1241.  
  1242. Unitarity check
  1243. 1.0
  1244. #################################
  1245.  
  1246. Matrix configuration (0=H, 1=T)
  1247. 1000100
  1248.  
  1249. Count
  1250. 68
  1251.  
  1252. Final state
  1253. [[ 0.70710678+0.j ]
  1254. [ 0.50000000+0.5j]]
  1255.  
  1256. Probabilities of |0> and |1> states
  1257. [ 0.5]
  1258. [ 0.5]
  1259.  
  1260. Unitarity check
  1261. 1.0
  1262. #################################
  1263.  
  1264. Matrix configuration (0=H, 1=T)
  1265. 1000101
  1266.  
  1267. Count
  1268. 69
  1269.  
  1270. Final state
  1271. [[ 0.85355339+0.35355339j]
  1272. [ 0.35355339-0.14644661j]]
  1273.  
  1274. Probabilities of |0> and |1> states
  1275. [ 0.85355339]
  1276. [ 0.14644661]
  1277.  
  1278. Unitarity check
  1279. 1.0
  1280. #################################
  1281.  
  1282. Matrix configuration (0=H, 1=T)
  1283. 1000110
  1284.  
  1285. Count
  1286. 70
  1287.  
  1288. Final state
  1289. [[ 0.5+0.5j]
  1290. [ 0.5-0.5j]]
  1291.  
  1292. Probabilities of |0> and |1> states
  1293. [ 0.5]
  1294. [ 0.5]
  1295.  
  1296. Unitarity check
  1297. 1.0
  1298. #################################
  1299.  
  1300. Matrix configuration (0=H, 1=T)
  1301. 1000111
  1302.  
  1303. Count
  1304. 71
  1305.  
  1306. Final state
  1307. [[ 0.70710678+0.j ]
  1308. [-0.50000000+0.5j]]
  1309.  
  1310. Probabilities of |0> and |1> states
  1311. [ 0.5]
  1312. [ 0.5]
  1313.  
  1314. Unitarity check
  1315. 1.0
  1316. #################################
  1317.  
  1318. Matrix configuration (0=H, 1=T)
  1319. 1001000
  1320.  
  1321. Count
  1322. 72
  1323.  
  1324. Final state
  1325. [[ 0.70710678+0.j]
  1326. [ 0.70710678+0.j]]
  1327.  
  1328. Probabilities of |0> and |1> states
  1329. [ 0.5]
  1330. [ 0.5]
  1331.  
  1332. Unitarity check
  1333. 1.0
  1334. #################################
  1335.  
  1336. Matrix configuration (0=H, 1=T)
  1337. 1001001
  1338.  
  1339. Count
  1340. 73
  1341.  
  1342. Final state
  1343. [[ 1.+0.j]
  1344. [ 0.+0.j]]
  1345.  
  1346. Probabilities of |0> and |1> states
  1347. [ 1.]
  1348. [ 0.]
  1349.  
  1350. Unitarity check
  1351. 1.0
  1352. #################################
  1353.  
  1354. Matrix configuration (0=H, 1=T)
  1355. 1001010
  1356.  
  1357. Count
  1358. 74
  1359.  
  1360. Final state
  1361. [[ 0.85355339+0.35355339j]
  1362. [ 0.14644661-0.35355339j]]
  1363.  
  1364. Probabilities of |0> and |1> states
  1365. [ 0.85355339]
  1366. [ 0.14644661]
  1367.  
  1368. Unitarity check
  1369. 1.0
  1370. #################################
  1371.  
  1372. Matrix configuration (0=H, 1=T)
  1373. 1001011
  1374.  
  1375. Count
  1376. 75
  1377.  
  1378. Final state
  1379. [[ 0.70710678+0.j ]
  1380. [ 0.00000000+0.70710678j]]
  1381.  
  1382. Probabilities of |0> and |1> states
  1383. [ 0.5]
  1384. [ 0.5]
  1385.  
  1386. Unitarity check
  1387. 1.0
  1388. #################################
  1389.  
  1390. Matrix configuration (0=H, 1=T)
  1391. 1001100
  1392.  
  1393. Count
  1394. 76
  1395.  
  1396. Final state
  1397. [[ 1.+0.j]
  1398. [ 0.+0.j]]
  1399.  
  1400. Probabilities of |0> and |1> states
  1401. [ 1.]
  1402. [ 0.]
  1403.  
  1404. Unitarity check
  1405. 1.0
  1406. #################################
  1407.  
  1408. Matrix configuration (0=H, 1=T)
  1409. 1001101
  1410.  
  1411. Count
  1412. 77
  1413.  
  1414. Final state
  1415. [[ 0.70710678+0.j ]
  1416. [ 0.50000000+0.5j]]
  1417.  
  1418. Probabilities of |0> and |1> states
  1419. [ 0.5]
  1420. [ 0.5]
  1421.  
  1422. Unitarity check
  1423. 1.0
  1424. #################################
  1425.  
  1426. Matrix configuration (0=H, 1=T)
  1427. 1001110
  1428.  
  1429. Count
  1430. 78
  1431.  
  1432. Final state
  1433. [[ 0.70710678+0.j]
  1434. [ 0.70710678+0.j]]
  1435.  
  1436. Probabilities of |0> and |1> states
  1437. [ 0.5]
  1438. [ 0.5]
  1439.  
  1440. Unitarity check
  1441. 1.0
  1442. #################################
  1443.  
  1444. Matrix configuration (0=H, 1=T)
  1445. 1001111
  1446.  
  1447. Count
  1448. 79
  1449.  
  1450. Final state
  1451. [[ 1.+0.j]
  1452. [ 0.+0.j]]
  1453.  
  1454. Probabilities of |0> and |1> states
  1455. [ 1.]
  1456. [ 0.]
  1457.  
  1458. Unitarity check
  1459. 1.0
  1460. #################################
  1461.  
  1462. Matrix configuration (0=H, 1=T)
  1463. 1010000
  1464.  
  1465. Count
  1466. 80
  1467.  
  1468. Final state
  1469. [[ 0.70710678+0.j ]
  1470. [ 0.50000000+0.5j]]
  1471.  
  1472. Probabilities of |0> and |1> states
  1473. [ 0.5]
  1474. [ 0.5]
  1475.  
  1476. Unitarity check
  1477. 1.0
  1478. #################################
  1479.  
  1480. Matrix configuration (0=H, 1=T)
  1481. 1010001
  1482.  
  1483. Count
  1484. 81
  1485.  
  1486. Final state
  1487. [[ 0.85355339+0.35355339j]
  1488. [ 0.35355339-0.14644661j]]
  1489.  
  1490. Probabilities of |0> and |1> states
  1491. [ 0.85355339]
  1492. [ 0.14644661]
  1493.  
  1494. Unitarity check
  1495. 1.0
  1496. #################################
  1497.  
  1498. Matrix configuration (0=H, 1=T)
  1499. 1010010
  1500.  
  1501. Count
  1502. 82
  1503.  
  1504. Final state
  1505. [[ 0.5+0.5j]
  1506. [ 0.5-0.5j]]
  1507.  
  1508. Probabilities of |0> and |1> states
  1509. [ 0.5]
  1510. [ 0.5]
  1511.  
  1512. Unitarity check
  1513. 1.0
  1514. #################################
  1515.  
  1516. Matrix configuration (0=H, 1=T)
  1517. 1010011
  1518.  
  1519. Count
  1520. 83
  1521.  
  1522. Final state
  1523. [[ 0.70710678+0.j ]
  1524. [-0.50000000+0.5j]]
  1525.  
  1526. Probabilities of |0> and |1> states
  1527. [ 0.5]
  1528. [ 0.5]
  1529.  
  1530. Unitarity check
  1531. 1.0
  1532. #################################
  1533.  
  1534. Matrix configuration (0=H, 1=T)
  1535. 1010100
  1536.  
  1537. Count
  1538. 84
  1539.  
  1540. Final state
  1541. [[ 0.85355339+0.35355339j]
  1542. [ 0.35355339-0.14644661j]]
  1543.  
  1544. Probabilities of |0> and |1> states
  1545. [ 0.85355339]
  1546. [ 0.14644661]
  1547.  
  1548. Unitarity check
  1549. 1.0
  1550. #################################
  1551.  
  1552. Matrix configuration (0=H, 1=T)
  1553. 1010101
  1554.  
  1555. Count
  1556. 85
  1557.  
  1558. Final state
  1559. [[ 8.53553391e-01+0.14644661j]
  1560. [ 2.77555756e-17+0.5j ]]
  1561.  
  1562. Probabilities of |0> and |1> states
  1563. [ 0.75]
  1564. [ 0.25]
  1565.  
  1566. Unitarity check
  1567. 1.0
  1568. #################################
  1569.  
  1570. Matrix configuration (0=H, 1=T)
  1571. 1010110
  1572.  
  1573. Count
  1574. 86
  1575.  
  1576. Final state
  1577. [[ 0.85355339+0.35355339j]
  1578. [ 0.35355339+0.14644661j]]
  1579.  
  1580. Probabilities of |0> and |1> states
  1581. [ 0.85355339]
  1582. [ 0.14644661]
  1583.  
  1584. Unitarity check
  1585. 1.0
  1586. #################################
  1587.  
  1588. Matrix configuration (0=H, 1=T)
  1589. 1010111
  1590.  
  1591. Count
  1592. 87
  1593.  
  1594. Final state
  1595. [[ 0.85355339+0.35355339j]
  1596. [ 0.14644661+0.35355339j]]
  1597.  
  1598. Probabilities of |0> and |1> states
  1599. [ 0.85355339]
  1600. [ 0.14644661]
  1601.  
  1602. Unitarity check
  1603. 1.0
  1604. #################################
  1605.  
  1606. Matrix configuration (0=H, 1=T)
  1607. 1011000
  1608.  
  1609. Count
  1610. 88
  1611.  
  1612. Final state
  1613. [[ 0.5+0.5j]
  1614. [ 0.5-0.5j]]
  1615.  
  1616. Probabilities of |0> and |1> states
  1617. [ 0.5]
  1618. [ 0.5]
  1619.  
  1620. Unitarity check
  1621. 1.0
  1622. #################################
  1623.  
  1624. Matrix configuration (0=H, 1=T)
  1625. 1011001
  1626.  
  1627. Count
  1628. 89
  1629.  
  1630. Final state
  1631. [[ 0.70710678+0.j ]
  1632. [-0.50000000+0.5j]]
  1633.  
  1634. Probabilities of |0> and |1> states
  1635. [ 0.5]
  1636. [ 0.5]
  1637.  
  1638. Unitarity check
  1639. 1.0
  1640. #################################
  1641.  
  1642. Matrix configuration (0=H, 1=T)
  1643. 1011010
  1644.  
  1645. Count
  1646. 90
  1647.  
  1648. Final state
  1649. [[ 0.85355339+0.35355339j]
  1650. [-0.14644661+0.35355339j]]
  1651.  
  1652. Probabilities of |0> and |1> states
  1653. [ 0.85355339]
  1654. [ 0.14644661]
  1655.  
  1656. Unitarity check
  1657. 1.0
  1658. #################################
  1659.  
  1660. Matrix configuration (0=H, 1=T)
  1661. 1011011
  1662.  
  1663. Count
  1664. 91
  1665.  
  1666. Final state
  1667. [[ 0.5+0.5j]
  1668. [ 0.5+0.5j]]
  1669.  
  1670. Probabilities of |0> and |1> states
  1671. [ 0.5]
  1672. [ 0.5]
  1673.  
  1674. Unitarity check
  1675. 1.0
  1676. #################################
  1677.  
  1678. Matrix configuration (0=H, 1=T)
  1679. 1011100
  1680.  
  1681. Count
  1682. 92
  1683.  
  1684. Final state
  1685. [[ 0.70710678+0.j ]
  1686. [-0.50000000+0.5j]]
  1687.  
  1688. Probabilities of |0> and |1> states
  1689. [ 0.5]
  1690. [ 0.5]
  1691.  
  1692. Unitarity check
  1693. 1.0
  1694. #################################
  1695.  
  1696. Matrix configuration (0=H, 1=T)
  1697. 1011101
  1698.  
  1699. Count
  1700. 93
  1701.  
  1702. Final state
  1703. [[ 0.14644661+0.35355339j]
  1704. [ 0.85355339+0.35355339j]]
  1705.  
  1706. Probabilities of |0> and |1> states
  1707. [ 0.14644661]
  1708. [ 0.85355339]
  1709.  
  1710. Unitarity check
  1711. 1.0
  1712. #################################
  1713.  
  1714. Matrix configuration (0=H, 1=T)
  1715. 1011110
  1716.  
  1717. Count
  1718. 94
  1719.  
  1720. Final state
  1721. [[ 1.11022302e-16+0.j]
  1722. [ 1.00000000e+00+0.j]]
  1723.  
  1724. Probabilities of |0> and |1> states
  1725. [ 1.23259516e-32]
  1726. [ 1.]
  1727.  
  1728. Unitarity check
  1729. 1.0
  1730. #################################
  1731.  
  1732. Matrix configuration (0=H, 1=T)
  1733. 1011111
  1734.  
  1735. Count
  1736. 95
  1737.  
  1738. Final state
  1739. [[ 0.70710678+0.j ]
  1740. [-0.50000000-0.5j]]
  1741.  
  1742. Probabilities of |0> and |1> states
  1743. [ 0.5]
  1744. [ 0.5]
  1745.  
  1746. Unitarity check
  1747. 1.0
  1748. #################################
  1749.  
  1750. Matrix configuration (0=H, 1=T)
  1751. 1100000
  1752.  
  1753. Count
  1754. 96
  1755.  
  1756. Final state
  1757. [[ 0.70710678+0.j]
  1758. [ 0.70710678+0.j]]
  1759.  
  1760. Probabilities of |0> and |1> states
  1761. [ 0.5]
  1762. [ 0.5]
  1763.  
  1764. Unitarity check
  1765. 1.0
  1766. #################################
  1767.  
  1768. Matrix configuration (0=H, 1=T)
  1769. 1100001
  1770.  
  1771. Count
  1772. 97
  1773.  
  1774. Final state
  1775. [[ 1.+0.j]
  1776. [ 0.+0.j]]
  1777.  
  1778. Probabilities of |0> and |1> states
  1779. [ 1.]
  1780. [ 0.]
  1781.  
  1782. Unitarity check
  1783. 1.0
  1784. #################################
  1785.  
  1786. Matrix configuration (0=H, 1=T)
  1787. 1100010
  1788.  
  1789. Count
  1790. 98
  1791.  
  1792. Final state
  1793. [[ 0.85355339+0.35355339j]
  1794. [ 0.14644661-0.35355339j]]
  1795.  
  1796. Probabilities of |0> and |1> states
  1797. [ 0.85355339]
  1798. [ 0.14644661]
  1799.  
  1800. Unitarity check
  1801. 1.0
  1802. #################################
  1803.  
  1804. Matrix configuration (0=H, 1=T)
  1805. 1100011
  1806.  
  1807. Count
  1808. 99
  1809.  
  1810. Final state
  1811. [[ 0.70710678+0.j ]
  1812. [ 0.00000000+0.70710678j]]
  1813.  
  1814. Probabilities of |0> and |1> states
  1815. [ 0.5]
  1816. [ 0.5]
  1817.  
  1818. Unitarity check
  1819. 1.0
  1820. #################################
  1821.  
  1822. Matrix configuration (0=H, 1=T)
  1823. 1100100
  1824.  
  1825. Count
  1826. 100
  1827.  
  1828. Final state
  1829. [[ 1.+0.j]
  1830. [ 0.+0.j]]
  1831.  
  1832. Probabilities of |0> and |1> states
  1833. [ 1.]
  1834. [ 0.]
  1835.  
  1836. Unitarity check
  1837. 1.0
  1838. #################################
  1839.  
  1840. Matrix configuration (0=H, 1=T)
  1841. 1100101
  1842.  
  1843. Count
  1844. 101
  1845.  
  1846. Final state
  1847. [[ 0.70710678+0.j ]
  1848. [ 0.50000000+0.5j]]
  1849.  
  1850. Probabilities of |0> and |1> states
  1851. [ 0.5]
  1852. [ 0.5]
  1853.  
  1854. Unitarity check
  1855. 1.0
  1856. #################################
  1857.  
  1858. Matrix configuration (0=H, 1=T)
  1859. 1100110
  1860.  
  1861. Count
  1862. 102
  1863.  
  1864. Final state
  1865. [[ 0.70710678+0.j]
  1866. [ 0.70710678+0.j]]
  1867.  
  1868. Probabilities of |0> and |1> states
  1869. [ 0.5]
  1870. [ 0.5]
  1871.  
  1872. Unitarity check
  1873. 1.0
  1874. #################################
  1875.  
  1876. Matrix configuration (0=H, 1=T)
  1877. 1100111
  1878.  
  1879. Count
  1880. 103
  1881.  
  1882. Final state
  1883. [[ 1.+0.j]
  1884. [ 0.+0.j]]
  1885.  
  1886. Probabilities of |0> and |1> states
  1887. [ 1.]
  1888. [ 0.]
  1889.  
  1890. Unitarity check
  1891. 1.0
  1892. #################################
  1893.  
  1894. Matrix configuration (0=H, 1=T)
  1895. 1101000
  1896.  
  1897. Count
  1898. 104
  1899.  
  1900. Final state
  1901. [[ 0.85355339+0.35355339j]
  1902. [ 0.14644661-0.35355339j]]
  1903.  
  1904. Probabilities of |0> and |1> states
  1905. [ 0.85355339]
  1906. [ 0.14644661]
  1907.  
  1908. Unitarity check
  1909. 1.0
  1910. #################################
  1911.  
  1912. Matrix configuration (0=H, 1=T)
  1913. 1101001
  1914.  
  1915. Count
  1916. 105
  1917.  
  1918. Final state
  1919. [[ 0.70710678+0.j ]
  1920. [ 0.00000000+0.70710678j]]
  1921.  
  1922. Probabilities of |0> and |1> states
  1923. [ 0.5]
  1924. [ 0.5]
  1925.  
  1926. Unitarity check
  1927. 1.0
  1928. #################################
  1929.  
  1930. Matrix configuration (0=H, 1=T)
  1931. 1101010
  1932.  
  1933. Count
  1934. 106
  1935.  
  1936. Final state
  1937. [[ 0.85355339+0.14644661j]
  1938. [ 0.35355339+0.35355339j]]
  1939.  
  1940. Probabilities of |0> and |1> states
  1941. [ 0.75]
  1942. [ 0.25]
  1943.  
  1944. Unitarity check
  1945. 1.0
  1946. #################################
  1947.  
  1948. Matrix configuration (0=H, 1=T)
  1949. 1101011
  1950.  
  1951. Count
  1952. 107
  1953.  
  1954. Final state
  1955. [[ 0.85355339+0.35355339j]
  1956. [ 0.35355339+0.14644661j]]
  1957.  
  1958. Probabilities of |0> and |1> states
  1959. [ 0.85355339]
  1960. [ 0.14644661]
  1961.  
  1962. Unitarity check
  1963. 1.0
  1964. #################################
  1965.  
  1966. Matrix configuration (0=H, 1=T)
  1967. 1101100
  1968.  
  1969. Count
  1970. 108
  1971.  
  1972. Final state
  1973. [[ 0.70710678+0.j ]
  1974. [ 0.00000000+0.70710678j]]
  1975.  
  1976. Probabilities of |0> and |1> states
  1977. [ 0.5]
  1978. [ 0.5]
  1979.  
  1980. Unitarity check
  1981. 1.0
  1982. #################################
  1983.  
  1984. Matrix configuration (0=H, 1=T)
  1985. 1101101
  1986.  
  1987. Count
  1988. 109
  1989.  
  1990. Final state
  1991. [[ 0.50000000 +5.00000000e-01j]
  1992. [ 0.70710678 +5.55111512e-17j]]
  1993.  
  1994. Probabilities of |0> and |1> states
  1995. [ 0.5]
  1996. [ 0.5]
  1997.  
  1998. Unitarity check
  1999. 1.0
  2000. #################################
  2001.  
  2002. Matrix configuration (0=H, 1=T)
  2003. 1101110
  2004.  
  2005. Count
  2006. 110
  2007.  
  2008. Final state
  2009. [[ 0.14644661+0.35355339j]
  2010. [ 0.85355339-0.35355339j]]
  2011.  
  2012. Probabilities of |0> and |1> states
  2013. [ 0.14644661]
  2014. [ 0.85355339]
  2015.  
  2016. Unitarity check
  2017. 1.0
  2018. #################################
  2019.  
  2020. Matrix configuration (0=H, 1=T)
  2021. 1101111
  2022.  
  2023. Count
  2024. 111
  2025.  
  2026. Final state
  2027. [[ 0.70710678+0.j]
  2028. [-0.70710678+0.j]]
  2029.  
  2030. Probabilities of |0> and |1> states
  2031. [ 0.5]
  2032. [ 0.5]
  2033.  
  2034. Unitarity check
  2035. 1.0
  2036. #################################
  2037.  
  2038. Matrix configuration (0=H, 1=T)
  2039. 1110000
  2040.  
  2041. Count
  2042. 112
  2043.  
  2044. Final state
  2045. [[ 1.+0.j]
  2046. [ 0.+0.j]]
  2047.  
  2048. Probabilities of |0> and |1> states
  2049. [ 1.]
  2050. [ 0.]
  2051.  
  2052. Unitarity check
  2053. 1.0
  2054. #################################
  2055.  
  2056. Matrix configuration (0=H, 1=T)
  2057. 1110001
  2058.  
  2059. Count
  2060. 113
  2061.  
  2062. Final state
  2063. [[ 0.70710678+0.j ]
  2064. [ 0.50000000+0.5j]]
  2065.  
  2066. Probabilities of |0> and |1> states
  2067. [ 0.5]
  2068. [ 0.5]
  2069.  
  2070. Unitarity check
  2071. 1.0
  2072. #################################
  2073.  
  2074. Matrix configuration (0=H, 1=T)
  2075. 1110010
  2076.  
  2077. Count
  2078. 114
  2079.  
  2080. Final state
  2081. [[ 0.70710678+0.j]
  2082. [ 0.70710678+0.j]]
  2083.  
  2084. Probabilities of |0> and |1> states
  2085. [ 0.5]
  2086. [ 0.5]
  2087.  
  2088. Unitarity check
  2089. 1.0
  2090. #################################
  2091.  
  2092. Matrix configuration (0=H, 1=T)
  2093. 1110011
  2094.  
  2095. Count
  2096. 115
  2097.  
  2098. Final state
  2099. [[ 1.+0.j]
  2100. [ 0.+0.j]]
  2101.  
  2102. Probabilities of |0> and |1> states
  2103. [ 1.]
  2104. [ 0.]
  2105.  
  2106. Unitarity check
  2107. 1.0
  2108. #################################
  2109.  
  2110. Matrix configuration (0=H, 1=T)
  2111. 1110100
  2112.  
  2113. Count
  2114. 116
  2115.  
  2116. Final state
  2117. [[ 0.70710678+0.j ]
  2118. [ 0.50000000+0.5j]]
  2119.  
  2120. Probabilities of |0> and |1> states
  2121. [ 0.5]
  2122. [ 0.5]
  2123.  
  2124. Unitarity check
  2125. 1.0
  2126. #################################
  2127.  
  2128. Matrix configuration (0=H, 1=T)
  2129. 1110101
  2130.  
  2131. Count
  2132. 117
  2133.  
  2134. Final state
  2135. [[ 0.85355339+0.35355339j]
  2136. [ 0.35355339-0.14644661j]]
  2137.  
  2138. Probabilities of |0> and |1> states
  2139. [ 0.85355339]
  2140. [ 0.14644661]
  2141.  
  2142. Unitarity check
  2143. 1.0
  2144. #################################
  2145.  
  2146. Matrix configuration (0=H, 1=T)
  2147. 1110110
  2148.  
  2149. Count
  2150. 118
  2151.  
  2152. Final state
  2153. [[ 0.5+0.5j]
  2154. [ 0.5-0.5j]]
  2155.  
  2156. Probabilities of |0> and |1> states
  2157. [ 0.5]
  2158. [ 0.5]
  2159.  
  2160. Unitarity check
  2161. 1.0
  2162. #################################
  2163.  
  2164. Matrix configuration (0=H, 1=T)
  2165. 1110111
  2166.  
  2167. Count
  2168. 119
  2169.  
  2170. Final state
  2171. [[ 0.70710678+0.j ]
  2172. [-0.50000000+0.5j]]
  2173.  
  2174. Probabilities of |0> and |1> states
  2175. [ 0.5]
  2176. [ 0.5]
  2177.  
  2178. Unitarity check
  2179. 1.0
  2180. #################################
  2181.  
  2182. Matrix configuration (0=H, 1=T)
  2183. 1111000
  2184.  
  2185. Count
  2186. 120
  2187.  
  2188. Final state
  2189. [[ 0.70710678+0.j]
  2190. [ 0.70710678+0.j]]
  2191.  
  2192. Probabilities of |0> and |1> states
  2193. [ 0.5]
  2194. [ 0.5]
  2195.  
  2196. Unitarity check
  2197. 1.0
  2198. #################################
  2199.  
  2200. Matrix configuration (0=H, 1=T)
  2201. 1111001
  2202.  
  2203. Count
  2204. 121
  2205.  
  2206. Final state
  2207. [[ 1.+0.j]
  2208. [ 0.+0.j]]
  2209.  
  2210. Probabilities of |0> and |1> states
  2211. [ 1.]
  2212. [ 0.]
  2213.  
  2214. Unitarity check
  2215. 1.0
  2216. #################################
  2217.  
  2218. Matrix configuration (0=H, 1=T)
  2219. 1111010
  2220.  
  2221. Count
  2222. 122
  2223.  
  2224. Final state
  2225. [[ 0.85355339+0.35355339j]
  2226. [ 0.14644661-0.35355339j]]
  2227.  
  2228. Probabilities of |0> and |1> states
  2229. [ 0.85355339]
  2230. [ 0.14644661]
  2231.  
  2232. Unitarity check
  2233. 1.0
  2234. #################################
  2235.  
  2236. Matrix configuration (0=H, 1=T)
  2237. 1111011
  2238.  
  2239. Count
  2240. 123
  2241.  
  2242. Final state
  2243. [[ 0.70710678+0.j ]
  2244. [ 0.00000000+0.70710678j]]
  2245.  
  2246. Probabilities of |0> and |1> states
  2247. [ 0.5]
  2248. [ 0.5]
  2249.  
  2250. Unitarity check
  2251. 1.0
  2252. #################################
  2253.  
  2254. Matrix configuration (0=H, 1=T)
  2255. 1111100
  2256.  
  2257. Count
  2258. 124
  2259.  
  2260. Final state
  2261. [[ 1.+0.j]
  2262. [ 0.+0.j]]
  2263.  
  2264. Probabilities of |0> and |1> states
  2265. [ 1.]
  2266. [ 0.]
  2267.  
  2268. Unitarity check
  2269. 1.0
  2270. #################################
  2271.  
  2272. Matrix configuration (0=H, 1=T)
  2273. 1111101
  2274.  
  2275. Count
  2276. 125
  2277.  
  2278. Final state
  2279. [[ 0.70710678+0.j ]
  2280. [ 0.50000000+0.5j]]
  2281.  
  2282. Probabilities of |0> and |1> states
  2283. [ 0.5]
  2284. [ 0.5]
  2285.  
  2286. Unitarity check
  2287. 1.0
  2288. #################################
  2289.  
  2290. Matrix configuration (0=H, 1=T)
  2291. 1111110
  2292.  
  2293. Count
  2294. 126
  2295.  
  2296. Final state
  2297. [[ 0.70710678+0.j]
  2298. [ 0.70710678+0.j]]
  2299.  
  2300. Probabilities of |0> and |1> states
  2301. [ 0.5]
  2302. [ 0.5]
  2303.  
  2304. Unitarity check
  2305. 1.0
  2306. #################################
  2307.  
  2308. Matrix configuration (0=H, 1=T)
  2309. 1111111
  2310.  
  2311. Count
  2312. 127
  2313.  
  2314. Final state
  2315. [[ 1.+0.j]
  2316. [ 0.+0.j]]
  2317.  
  2318. Probabilities of |0> and |1> states
  2319. [ 1.]
  2320. [ 0.]
  2321.  
  2322. Unitarity check
  2323. 1.0
  2324. #################################
  2325.  
  2326.  
  2327.  
  2328. #####################################
  2329. #####################################
  2330. #####################################
  2331.  
  2332. Sorted probabilities for |0> state
  2333.  
  2334. [ 1.23259516e-32]
  2335. [ 1.23259516e-32]
  2336. [ 0.14644661]
  2337. [ 0.14644661]
  2338. [ 0.14644661]
  2339. [ 0.14644661]
  2340. [ 0.14644661]
  2341. [ 0.14644661]
  2342. [ 0.14644661]
  2343. [ 0.14644661]
  2344. [ 0.5]
  2345. [ 0.5]
  2346. [ 0.5]
  2347. [ 0.5]
  2348. [ 0.5]
  2349. [ 0.5]
  2350. [ 0.5]
  2351. [ 0.5]
  2352. [ 0.5]
  2353. [ 0.5]
  2354. [ 0.5]
  2355. [ 0.5]
  2356. [ 0.5]
  2357. [ 0.5]
  2358. [ 0.5]
  2359. [ 0.5]
  2360. [ 0.5]
  2361. [ 0.5]
  2362. [ 0.5]
  2363. [ 0.5]
  2364. [ 0.5]
  2365. [ 0.5]
  2366. [ 0.5]
  2367. [ 0.5]
  2368. [ 0.5]
  2369. [ 0.5]
  2370. [ 0.5]
  2371. [ 0.5]
  2372. [ 0.5]
  2373. [ 0.5]
  2374. [ 0.5]
  2375. [ 0.5]
  2376. [ 0.5]
  2377. [ 0.5]
  2378. [ 0.5]
  2379. [ 0.5]
  2380. [ 0.5]
  2381. [ 0.5]
  2382. [ 0.5]
  2383. [ 0.5]
  2384. [ 0.5]
  2385. [ 0.5]
  2386. [ 0.5]
  2387. [ 0.5]
  2388. [ 0.5]
  2389. [ 0.5]
  2390. [ 0.5]
  2391. [ 0.5]
  2392. [ 0.5]
  2393. [ 0.5]
  2394. [ 0.5]
  2395. [ 0.5]
  2396. [ 0.5]
  2397. [ 0.5]
  2398. [ 0.5]
  2399. [ 0.5]
  2400. [ 0.5]
  2401. [ 0.5]
  2402. [ 0.5]
  2403. [ 0.5]
  2404. [ 0.5]
  2405. [ 0.5]
  2406. [ 0.5]
  2407. [ 0.5732233]
  2408. [ 0.75]
  2409. [ 0.75]
  2410. [ 0.75]
  2411. [ 0.75]
  2412. [ 0.75]
  2413. [ 0.75]
  2414. [ 0.75]
  2415. [ 0.75]
  2416. [ 0.85355339]
  2417. [ 0.85355339]
  2418. [ 0.85355339]
  2419. [ 0.85355339]
  2420. [ 0.85355339]
  2421. [ 0.85355339]
  2422. [ 0.85355339]
  2423. [ 0.85355339]
  2424. [ 0.85355339]
  2425. [ 0.85355339]
  2426. [ 0.85355339]
  2427. [ 0.85355339]
  2428. [ 0.85355339]
  2429. [ 0.85355339]
  2430. [ 0.85355339]
  2431. [ 0.85355339]
  2432. [ 0.85355339]
  2433. [ 0.85355339]
  2434. [ 0.85355339]
  2435. [ 0.85355339]
  2436. [ 0.85355339]
  2437. [ 0.85355339]
  2438. [ 0.85355339]
  2439. [ 0.85355339]
  2440. [ 1.]
  2441. [ 1.]
  2442. [ 1.]
  2443. [ 1.]
  2444. [ 1.]
  2445. [ 1.]
  2446. [ 1.]
  2447. [ 1.]
  2448. [ 1.]
  2449. [ 1.]
  2450. [ 1.]
  2451. [ 1.]
  2452. [ 1.]
  2453. [ 1.]
  2454. [ 1.]
  2455. [ 1.]
  2456. [ 1.]
  2457. [ 1.]
  2458. [ 1.]
  2459. [ 1.]
  2460. [ 1.]
  2461. [ 1.]
  2462. >>>
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement