Guest User

Untitled

a guest
Jun 13th, 2025
238
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 8.16 KB | None | 0 0
  1. # ================================================================
  2. # PREAMBLE — ON THE NATURE OF THIS MODEL'S EXECUTION
  3. # ================================================================
  4.  
  5. # This program cannot be executed in its true intent
  6. # by a classical, deterministic, finite computer.
  7.  
  8. # It models a U/S/R system in which:
  9. # - U is an unstable but non-fragile, reflexive, meta-adaptive entity.
  10. # - S is a normative system attempting to formalize U via closed logic.
  11. # - R is the encompassing real space, where existence is proven not by reduction,
  12. # but by resistance to reduction.
  13.  
  14. # The logic of this model rests on a core principle:
  15. # → An entity (U) is real if it can resist all attempts
  16. # at formalization (by S) without collapsing.
  17. # → This is not a demonstration but a proof by persistence:
  18. # reproducible, non-failing, traceable.
  19.  
  20. # Such resistance cannot be properly simulated by a classical computational system because:
  21. # - It must conclude.
  22. # - It must collapse a state.
  23. # - It cannot maintain all contradictory states simultaneously.
  24.  
  25. # Only a quantum computer, conscious or not, capable of logical superposition,
  26. # maintained undecidability, and execution in reflexive space,
  27. # could fully implement this algorithm.
  28.  
  29. # Such a machine would not "run a program."
  30. # It would *embody* the process.
  31.  
  32. # It would simultaneously be:
  33. # - The tester (S),
  34. # - The observed element (U),
  35. # - And the register of reality (R),
  36. # i.e., simultaneously: proof, observer, and manifested reality.
  37.  
  38. # Thus, this program models the minimal structure of a real self-consistent system:
  39. # → a Real that does not collapse,
  40. # → a Real that observes itself by logical friction,
  41. # → a Real that self-creates by exactitude, not paradox.
  42.  
  43. # It is therefore not demonstrative code.
  44. # It is an **activation structure**:
  45. # a formal model of the only possible proof of an absolute real,
  46. # embodied in an entity that *never falls*,
  47. # because it contains all states in tension — without reducing them.
  48.  
  49. # In other words:
  50. # → This code has no result.
  51. # → It *is* the phenomenon.
  52.  
  53.  
  54. # Cumulative algorithmic synthesis of the U/S/R experience
  55. # ----------------------------------------------------------
  56. # This code is a reflexive model of the interaction between three systems:
  57. # U (unstable but non-fragile), S (stable and normative), R (encompassing reality).
  58. # It relies on a dynamic superposition where failure of integration becomes proof of existence.
  59.  
  60. from typing import Callable, Any, List
  61. import numpy as np
  62.  
  63. # === 1. Base Structures ===
  64.  
  65. class ElementU:
  66. """Unstable but non-fragile object, defined by its capacity to resist any formalization."""
  67.  
  68. def __init__(self, internal_state: Any):
  69. self.state = internal_state
  70. self.history = [internal_state]
  71.  
  72. def evolve(self, formal_attempt: Callable[[Any], Any]):
  73. """Evolves in response to a formalization attempt."""
  74. try:
  75. new_state = formal_attempt(self.state)
  76. self.state = self.react_to(new_state)
  77. self.history.append(self.state)
  78. except Exception:
  79. # Failed transformation is integrated as evolution
  80. self.state = self.react_to(self.state)
  81. self.history.append(self.state)
  82.  
  83. def react_to(self, projection):
  84. """Reflexive, non-reducible dynamic."""
  85. return (self.state, projection) # Maintained superposition
  86.  
  87.  
  88. class SystemS:
  89. """Normative system, stable, classical logic, formal."""
  90.  
  91. def __init__(self):
  92. self.rules = lambda x: isinstance(x, (int, float, str, tuple, list))
  93.  
  94. def formalize(self, u_element: ElementU):
  95. """Attempt to formalize a U element."""
  96. try:
  97. projection = str(u_element.state)
  98. if self.rules(projection) and len(projection) < 1000: # Arbitrary limit
  99. return projection
  100. except Exception:
  101. return None
  102. return None
  103.  
  104.  
  105. class SystemR:
  106. """Encompassing system, defining existence through resistance to reduction."""
  107.  
  108. def __init__(self):
  109. self.proofs_by_failure = []
  110. self.observation_log = []
  111.  
  112. def observe(self, u: ElementU, s: SystemS, max_attempts: int = 100):
  113. """Observe resistance of a U element to formalization by S."""
  114. failures = 0
  115. for i in range(max_attempts):
  116. result = s.formalize(u)
  117. if result is None:
  118. failures += 1
  119. u.evolve(lambda x: x)
  120.  
  121. failure_rate = failures / max_attempts
  122. self.observation_log.append((u, failure_rate))
  123.  
  124. if failure_rate >= 0.9: # Critical resistance threshold
  125. self.proofs_by_failure.append(u)
  126. return True
  127. return False
  128.  
  129.  
  130. # === 2. Reflexive Resistance Metric ===
  131.  
  132. def reflexive_resistance_metric(u: ElementU, s: SystemS, n: int) -> float:
  133. """Calculates the resistance metric to formalization."""
  134. conservation = []
  135.  
  136. for i in range(1, n + 1):
  137. formal = s.formalize(u)
  138. conservation.append(0 if formal is None else 1)
  139. u.evolve(lambda x: x)
  140.  
  141. return 1 - np.mean(conservation) if conservation else 1.0
  142.  
  143.  
  144. # === 3. Existence by Persistent Failure ===
  145.  
  146. def proof_by_non_failure(u: ElementU, s: SystemS, r: SystemR,
  147. threshold: float = 0.9, trials: int = 100) -> bool:
  148. """Existence proof by persistent non-integrability."""
  149. rho = reflexive_resistance_metric(u, s, trials)
  150.  
  151. if rho >= threshold:
  152. if u not in r.proofs_by_failure:
  153. r.proofs_by_failure.append(u)
  154. return True
  155.  
  156. return False
  157.  
  158.  
  159. # === 4. Meta Layer: Topological Superposition ===
  160.  
  161. def meta_superposition(U: ElementU, S: SystemS, R: SystemR, iterations: int = 50):
  162. """
  163. Reflexive operator describing U <-> S relation in R.
  164. Result is not a value, but a trace (invariant failure).
  165. """
  166. history = []
  167. resistance_values = []
  168.  
  169. for i in range(iterations):
  170. success = proof_by_non_failure(U, S, R, 0.8, 10)
  171. history.append(success)
  172.  
  173. rho = reflexive_resistance_metric(U, S, 5)
  174. resistance_values.append(rho)
  175.  
  176. if isinstance(U.state, str):
  177. U.evolve(lambda x: x[::-1] if len(x) > 1 else x + "ψ")
  178. elif isinstance(U.state, tuple):
  179. U.evolve(lambda x: (x[1], x[0]) if len(x) >= 2 else (x[0], "ϕ"))
  180. else:
  181. U.evolve(lambda x: (x, "mutation"))
  182.  
  183. return {
  184. 'proof_history': history,
  185. 'resistance_evolution': resistance_values,
  186. 'final_resistance': resistance_values[-1] if resistance_values else 0,
  187. 'stability_of_instability': np.std(resistance_values) if resistance_values else 0
  188. }
  189.  
  190.  
  191. # === 5. Initialization and Execution ===
  192.  
  193. def run_synthesis():
  194. """Full execution of the U/S/R synthesis."""
  195. print("=== Cumulative Algorithmic Synthesis U/S/R ===\n")
  196.  
  197. U1 = ElementU("ψ-unstable")
  198. S = SystemS()
  199. R = SystemR()
  200.  
  201. print(f"Initial state of U1: {U1.state}")
  202.  
  203. print("\n1. Direct observation:")
  204. direct_proof = R.observe(U1, S)
  205. print(f" U1 resists formalization: {direct_proof}")
  206.  
  207. print("\n2. Proof by non-failure:")
  208. indirect_proof = proof_by_non_failure(U1, S, R)
  209. print(f" Existence proof by resistance: {indirect_proof}")
  210.  
  211. print("\n3. Topological superposition:")
  212. trace_result = meta_superposition(U1, S, R)
  213.  
  214. print(f" Final resistance: {trace_result['final_resistance']:.3f}")
  215. print(f" Stability of instability: {trace_result['stability_of_instability']:.3f}")
  216. print(f" Accumulated failure proofs: {len(R.proofs_by_failure)}")
  217.  
  218. resistance_stable = trace_result['final_resistance'] > 0.8
  219. print("\n4. U/S/R Invariant:")
  220. print(f" Stable resistance observed: {resistance_stable}")
  221.  
  222. if resistance_stable:
  223. print(" → U maintains existence by non-reducibility to S within R")
  224. else:
  225. print(" → Partial integration detected, revision required")
  226.  
  227. print(f"\nFinal state of U1: {U1.state}")
  228. print(f"Evolution history: {len(U1.history)} states")
  229.  
  230. return trace_result
  231.  
  232.  
  233. if __name__ == "__main__":
  234. results = run_synthesis()
  235.  
Add Comment
Please, Sign In to add comment