Advertisement
Kaawumba

win_loss_simulation.m

Oct 19th, 2017
380
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
MatLab 3.84 KB | None | 0 0
  1. % win_loss_simulation.m
  2. % Simulates skill rating change over many games in Overwatch
  3.  
  4. function  win_loss_simulation(starting_rank, n_games, seed, distribution, mu, sigma)
  5.  
  6. % controls the general variance of cdf distributions, ignored for coin-flip
  7. if nargin < 6
  8.     sigma = 500;
  9. end
  10.  
  11. % controls the average SR for cdf distributions, ignored for coin-flip
  12. if nargin < 5
  13.    mu = 2500;
  14. end
  15.  
  16. % which distribution to use
  17. if nargin < 4
  18.    distribution = 'cdf'; %or 'coin-flip'
  19. end
  20.  
  21. % random number generator seed
  22. if nargin < 3
  23.    seed = 73;
  24. end
  25.  
  26. % number of games
  27. if nargin < 2
  28.    n_games = 1000;
  29. end
  30.  
  31. % starting SR
  32. if nargin < 1
  33.     starting_rank = 2500;
  34. end
  35.  
  36. rng(seed)
  37. change_per_win = 25;
  38. rank_at_game = zeros(1,n_games);
  39. result_at_game = zeros(1,n_games);
  40. streaks = zeros(1,n_games);
  41. rank_at_game(1) = starting_rank;
  42. streak_count = 1;
  43. last_result = true;
  44.  
  45. pd = makedist('Normal', mu, sigma);
  46.  
  47. if strcmp(distribution, 'cdf')
  48.     label = 'CDF Statistics';
  49. else
  50.     if strcmp(distribution, 'coin-flip')
  51.         label = 'Coin-Flip Statistics';
  52.     else
  53.         ME = MException('win_loss_simulation:badParameter', 'Unrecognized distribution type');
  54.         throw (ME);
  55.     end
  56. end
  57.  
  58. for n = 2:n_games
  59.     if strcmp(distribution, 'cdf')
  60.         win =  rand >= cdf(pd, rank_at_game(n-1));
  61.     else
  62.         win = rand >=0.5;
  63.     end
  64.  
  65.     if win  
  66.         change = change_per_win;
  67.         result_at_game(n) = 1;
  68.     else      
  69.         change = -change_per_win;
  70.         result_at_game(n) = -1;
  71.     end
  72.    
  73.     if (win == last_result)
  74.         streak_count = streak_count+1;
  75.     else
  76.         streaks(streak_count) = streaks(streak_count)+1;
  77.         streak_count = 1;      
  78.     end
  79.     last_result = win;
  80.    
  81.     rank_at_game(n) = rank_at_game(n-1) + change;
  82. end
  83.  
  84. figure
  85. plot(rank_at_game);
  86. xlabel('Game Number');
  87. ylabel('Skill Rating');
  88. title(strcat("Skill Rating vs Game, ",label));
  89. figure
  90. errorbar(streaks/n_games, sqrt(streaks)/n_games);
  91. xlabel('Streak Length');
  92. ylabel('Number of Streaks / Number of Games');
  93. title(strcat("Streak Frequency, ", label));
  94. axis([0 25 0 0.5])
  95.  
  96. dist = zeros(1,5000);
  97. for i=1:5000
  98.     if strcmp(distribution, 'cdf')
  99.         dist(i) = 1 - cdf(pd, i);
  100.     else
  101.         dist(i) = 0.5;
  102.     end
  103. end
  104. figure
  105. plot(dist);
  106. xlabel('Skill Rating');
  107. ylabel('Win Probability');
  108. title(strcat("Win Probability vs Skill Rating, ", label));
  109. axis([0 5000 0 1]);
  110. if strcmp(distribution, 'cdf')
  111.     newline = sprintf('\n');
  112.     txt = ['mu = ', num2str(mu,4), newline, 'sigma = ', num2str(sigma,3)];
  113.     text(500, .1, txt);
  114. end
  115.  
  116. %auto correlation function calculation
  117. ac_length = 10;
  118. ac_count = zeros(1, ac_length*2+1);
  119. ac_error = zeros(1, ac_length*2+1);
  120. ac_func = zeros(1, ac_length*2+1);
  121. ac_func_sq = zeros(1, ac_length*2+1);
  122. for n = 1:n_games
  123.     for m = n-ac_length:n+ac_length
  124.         if m > 0 && m <= n_games  
  125.             if(result_at_game(n) == 0)
  126.                 continue;
  127.             end
  128.             ac_count(m - n +ac_length+1) = ac_count(m - n +ac_length+1) + 1;
  129.             if(result_at_game(n) == 1)
  130.                 ac_func(m - n + ac_length + 1) = ac_func(m-n+ac_length+1) + result_at_game(m);
  131.             else
  132.                 ac_func(m - n + ac_length + 1) = ac_func(m-n+ac_length+1) - result_at_game(m);
  133.             end
  134.             ac_func_sq(m-n+ac_length+1) =  ac_func_sq(m-n+ac_length+1) + result_at_game(m)*result_at_game(m);
  135.            
  136.         end
  137.     end
  138. end
  139.  
  140. for n = 1:ac_length*2+1
  141.    ac_error(n) = sqrt(ac_func_sq(n) / (ac_count(n) - 1) - ac_func(n)*ac_func(n)/(ac_count(n) * (ac_count(n)-1))) / sqrt(ac_count(n));
  142.    ac_func(n) = ac_func(n) / ac_count(n);
  143. end
  144.  
  145. figure
  146. ac_func_x = -ac_length:ac_length;
  147. errorbar(ac_func_x, ac_func, ac_error);
  148. xlabel('Game Differential');
  149. ylabel('Auto Correlation');
  150. title(strcat("Win/Loss Auto-correlation function, ", label));
  151.  
  152. end
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement