Advertisement
Guest User

Math

a guest
Dec 14th, 2018
67
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 4.96 KB | None | 0 0
  1. \documentclass[a4paper,oneside]{article}
  2. \usepackage{amsmath}
  3. \usepackage{mathabx}
  4. \usepackage{blkarray}
  5. \usepackage[makeroom]{cancel}
  6. \usepackage{makecell}
  7. \newcommand\0{\kern-1.2pt\vec{\kern1.2pt 0}}
  8. \begin{document}
  9.  
  10. \textbf{Math 1180 Final Review}\\
  11. \begin{enumerate}
  12. \item $\cos\theta=\frac{\vec{u}\cdot\vec{v}}{\|\vec{u}\|\cdot\|\vec{v}\|}=\frac{-1+2+2}{\sqrt{6}\cdot\sqrt{6}}=\frac{3}{6}=\frac{1}{2}$, $\theta=\frac{\pi}{3}$\\
  13.  
  14. \item $\vec{p}_o=\begin{bmatrix}1 \\ -1 \\ 2\end{bmatrix}$, $\vec{d}=\begin{bmatrix}1\\-1\\2\end{bmatrix}-\begin{bmatrix}-1\\-2\\1\end{bmatrix}=\begin{bmatrix}2\\1\\1\end{bmatrix}$\\
  15.  
  16.    vector form: $\vec{x}=\vec{p}_o+t\vec{d}=\begin{bmatrix}1 \\ -1 \\ 2\end{bmatrix}+t\begin{bmatrix}2\\1\\1\end{bmatrix}$, parametric $\begin{cases}x=1+2t\\y=-1+t\\z=2+t\end{cases}$\\
  17.  
  18. \item \textit{Proof.} Consider $c_1(\vec{u})+c_2(\vec{u}-\vec{v})+c_3(\vec{u}-\vec{v}-\vec{w})=\0$ $\circledast$\\
  19.  
  20. $(c_1+c_2)\vec{u}-(c_2+c_3)\vec{v}-c_3\vec{w}=\0$\\
  21.  
  22.    Since $\vec{u}$, $\vec{v}$, $\vec{w}$ are lin. indep. $\implies$ $\begin{cases}c_1+c_2\qquad=0 \\ \qquad c_2+c_3=0 \\ \qquad\qquad\mspace{2mu} c_3=0 \end{cases}$ $\implies$ $\begin{cases}c_1=0\\c_2=0\\c_3=0\end{cases}$\\
  23.    
  24.    So $\circledast$ is true iff $c_1=c_2=c_3=0$.\\
  25.    
  26.    Therefore, $\vec{u}$, $\vec{u}-\vec{v}$, $\vec{u}-\vec{v}-\vec{w}$ are lin. indep.\\
  27.    
  28. \item \textit{Proof.} Let $X=I-A-A^2$.
  29.  
  30. \begin{flalign*}(I+A)X &=(I+A)(I-A-A^2)=(I-\cancel{A}-\cancel{A^2})+(\cancel{A}-\cancel{A^2}-A^3)\\
  31. &=I-A^3=I-0=1\text{ since }A^3=0&\end{flalign*} \\
  32. By Thm 3.13, $I+A$ is invertible and $(I+A)^{-1}=X=I-A-A^2$
  33.  
  34. \item \begin{enumerate}
  35. \item[(1)]$\det A=1\cdot1\cdot(-1)$\\$\det B=\begin{vmatrix}1 & -2 & 1\\1 & -1 & 0\\1 & -1 & 1\\\end{vmatrix}=\begin{vmatrix}1 & -2 & 1\\0 & 1 & -1\\0 & 1 & 0\end{vmatrix}=\begin{vmatrix}1 & -2 & 1\\0 & 1 & -1\\0 & 0 & 0\end{vmatrix}=1\cdot1\cdot1=1$\\
  36. $\det{(AB)}=\det A\cdot\det B=(-1)\cdot1=1$
  37. \item[(2)]Since $\det A \neq 0$, $\det B \neq 0$, $\det AB \neq 0$, $A$, $B$ \& $AB$ are invertible.\\
  38.  
  39. \begin{flalign*}
  40. [A\vert I_n]&=
  41. \left[\begin{array}{ccc|ccc}
  42. 1 & -1 & 1 & 1 & 0 & 0 \\
  43. 0 & 1 & 1 & 0 & 1 & 0 \\
  44. 0 & 0 & -1 & 0 & 0 & 1 \\
  45. \end{array}\right]\\
  46. &\rightarrow \left[\begin{array}{ccc|ccc}
  47. 1 & 0 & 2 & 1 & 1 & 0 \\
  48. 0 & 1 & 1 & 0 & 1 & 0 \\
  49. 0 & 0 & 1 & 0 & 0 & 1 \\
  50. \end{array}\right]\\
  51. &\rightarrow\left[\begin{array}{ccc|ccc}
  52. 1 & 0 & 0 & 1 & 1 & 2 \\
  53. 0 & 1 & 0 & 0 & 1 & 1 \\
  54. 0 & 0 & 0 & 0 & 0 & -1 \\
  55. \end{array}\right]\\
  56. A^{-1}&=\begin{bmatrix}
  57. 1&1&2\\0&1&1\\0&0&-1
  58. \end{bmatrix}&
  59. \end{flalign*}
  60.  
  61. \begin{flalign*}
  62. [B\vert I_n]&=
  63. \left[\begin{array}{ccc|ccc}
  64. 1 & -2 & 1 & 1 & 0 & 0 \\
  65. 1 & -1 & 0 & 0 & 1 & 0 \\
  66. 1 & -1 & 1 & 0 & 0 & 1 \\
  67. \end{array}\right]\\
  68. &\rightarrow \left[\begin{array}{ccc|ccc}
  69. 1 & -2 & 1 & 1 & 0 & 0 \\
  70. 0 & 1 & -1 & -1 & 1 & 0 \\
  71. 0 & 1 & 0 & -1 & 0 & 1 \\
  72. \end{array}\right]\\
  73. &\rightarrow\left[\begin{array}{ccc|ccc}
  74. 1 & 0 & -1 & -1 & 2 & 0 \\
  75. 0 & 1 & -1 & -1 & 1 & 0 \\
  76. 0 & 0 & 1 & 0 & -1 & 1 \\
  77. \end{array}\right]\\
  78. &\rightarrow\left[\begin{array}{ccc|ccc}
  79. 1 & 0 & 0 & -1 & 1 & 1 \\
  80. 0 & 1 & 0 & -1 & 0 & 1 \\
  81. 0 & 0 & 1 & 0 & -1 & 1 \\
  82. \end{array}\right]\\
  83. B^{-1}&=\begin{bmatrix}
  84. -1&-1&1\\1&0&-1\\0&1&-1
  85. \end{bmatrix}&
  86. \end{flalign*}
  87.  
  88. $(AB)^{-1}=B^{-1}A^{-1}=\begin{bmatrix}-1&-1&1\\1&0&-1\\0&1&-1\end{bmatrix}\begin{bmatrix}1&1&2\\0&1&1\\0&0&-1\end{bmatrix}=\begin{bmatrix}-1&0&-2\\-1&-1&-3\\0&-1&-2\end{bmatrix}$
  89. \end{enumerate}
  90.  
  91. \item
  92. $A\rightarrow\begin{bmatrix}1 & 0 & 2 & 4 \\0 & 1 & -3 & -1 \\0 & 4 & -12 & 4 \\0 & -1 & 3 & 1 \end{bmatrix}\rightarrow\begin{blockarray}{*5{c}}\begin{block}{[ccccc]}1 & 0 & 2 & 4 \\0 & 1 & -3 & -1 \\0 & 4 & -12 & 4 \\0 & -1 & 3 & 1\\\end{block}\uparrow & \uparrow & s & t\end{blockarray}$\\
  93.  
  94. $x_3=s, \, x_4=t \\x_2-3x_3-x_4=0 \\\implies x_2=3s+t \\x_1+2x_3+4x_4=0 \\\implies x_1=-2s-4t$\\
  95.  
  96. $\vec{x}=\begin{bmatrix}
  97. -2s-4t\\
  98. \:\: 3s+\; t\\
  99. s\quad \; \\
  100. \; \, \; \qquad t
  101. \end{bmatrix}=s\begin{bmatrix}-2\\3\\1\\0\end{bmatrix}+t\begin{bmatrix}-4\\1\\0\\1\end{bmatrix}$\\
  102.  
  103. $\text{A basis for }\mathnormal{row}(A)=\left \{\begin{bmatrix}1&0&2&4\end{bmatrix},\,\begin{bmatrix}0&1&-3&-1\end{bmatrix}\right\}$\\
  104.  
  105. $\text{A basis for }\mathnormal{col}(A)=\left\{\begin{bmatrix}1\\0\\3\\0\end{bmatrix},\,\begin{bmatrix}0\\1\\4\\-1\end{bmatrix}\right\}$\\
  106.  
  107. $\text{A basis for }\mathnormal{null}(A)=\left\{\begin{bmatrix}-2\\3\\1\\0\end{bmatrix},\,\begin{bmatrix}-4\\1\\0\\1\end{bmatrix}\right\}$\\
  108.  
  109. $\mathnormal{rank}(A)=2,\,\mathnormal{nullity}(A)=2$
  110.  
  111. \item
  112. \begin{enumerate}
  113. \item [(1)]
  114. \begin{flalign*}
  115. \det(A-\lambda I)
  116. &=\begin{vmatrix}
  117. 1-\lambda & 2 & 0\\
  118. -1 & -1-\lambda & 1\\
  119. 0 & 1 & 1-\lambda
  120. \end{vmatrix}=
  121. (1-\lambda)\begin{vmatrix}
  122. -1-\lambda&1\\1&1-\lambda\end{vmatrix}-(-1)\begin{vmatrix}2&0\\1&1-\lambda\end{vmatrix}\\
  123. &=(1-\lambda)[(-1-\lambda)(1-\lambda)-1]+2(1-\lambda)=(1-\lambda)[\lambda^2-1-1+2]=-\lambda^2(1-\lambda)\\
  124. &=0,\,(A-\lambda I)\vec{x}=\0&
  125. \end{flalign*}
  126.  
  127.  
  128. \item [(2)]
  129. \end{enumerate}
  130. \end{enumerate}
  131. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement