Advertisement
Guest User

Untitled

a guest
Oct 24th, 2017
128
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 8.02 KB | None | 0 0
  1. import tensorflow as tf
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. try:
  5. from scipy import misc
  6. except ImportError:
  7. !pip install scipy
  8. from scipy import misc
  9.  
  10.  
  11. training_size = 300
  12. img_size = 20*20*3
  13.  
  14. #class Struct:
  15. # "A structure that can have any fields defined."
  16. # def __init__(self, **entries): self.__dict__.update(entries)
  17. #training_images=[];
  18. #training_labels=[];
  19. #training_data= Struct(training_set=training_images, labels=training_labels)
  20.  
  21.  
  22. training_images = np.empty(shape=(training_size,20,20,3))
  23. import glob
  24. i = 0
  25. for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
  26. image = misc.imread(filename)
  27. training_images[i] = image
  28. i+=1
  29. print(training_images[0].shape)
  30.  
  31. a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  32. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  33. 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
  34. training_labels = tf.one_hot(a,3)
  35. sess = tf.Session()
  36. sess.run(training_labels)
  37.  
  38.  
  39.  
  40. #################################################### test
  41. test_size = 300
  42. img_size = 20*20*3
  43. #class Struct:
  44. # "A structure that can have any fields defined."
  45. # def __init__(self, **entries): self.__dict__.update(entries)
  46. #test_images=[];
  47. #test_labels=[];
  48. #test_data= Struct(training_set=test_images, labels=test_labels)
  49.  
  50. test_images = np.empty(shape=(test_size,20,20,3))
  51. import glob
  52. i = 0
  53. for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
  54. image = misc.imread(filename)
  55. test_images[i] = image
  56. i+=1
  57. print(test_images[0].shape)
  58. a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  59. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  60. 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
  61. test_labels = tf.one_hot(a,3)
  62. sess = tf.Session()
  63. sess.run(test_labels)
  64.  
  65. #################################################### test
  66. test_size = 300
  67. img_size = 20*20*3
  68. #class Struct:
  69. # "A structure that can have any fields defined."
  70. # def __init__(self, **entries): self.__dict__.update(entries)
  71. #test_images=[];
  72. #test_labels=[];
  73. #test_data= Struct(training_set=test_images, labels=test_labels)
  74.  
  75. test_images = np.empty(shape=(test_size,20,20,3))
  76. import glob
  77. i = 0
  78. for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
  79. image = misc.imread(filename)
  80. test_images[i] = image
  81. i+=1
  82. print(test_images[0].shape)
  83. a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  84. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  85. 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
  86. test_labels = tf.one_hot(a,3)
  87. sess = tf.Session()
  88. sess.run(test_labels)
  89. #Similar to MNIST
  90. x = tf.placeholder(tf.float64, [None, img_size])
  91. W = tf.Variable(tf.zeros([img_size, 3], dtype=tf.float64))
  92. b = tf.Variable(tf.zeros([3], dtype=tf.float64))
  93. y = tf.nn.softmax(tf.matmul(x, W) + b)
  94. y_ = tf.placeholder(tf.float64, [None, 3])
  95. cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
  96. train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
  97. sess = tf.InteractiveSession()
  98. #tf.global_variables_initializer().run()
  99. tf.local_variables_initializer().run()
  100.  
  101. def next_batch(self, batch_size, fake_data=False, shuffle=True):
  102. """Return the next `batch_size` examples from this data set."""
  103. if fake_data:
  104. fake_image = [1] * 784
  105. if self.one_hot:
  106. fake_label = [1] + [0] * 9
  107. else:
  108. fake_label = 0
  109. return [fake_image for _ in xrange(batch_size)], [
  110. fake_label for _ in xrange(batch_size)
  111. ]
  112. start = self._index_in_epoch
  113. # Shuffle for the first epoch
  114. if self._epochs_completed == 0 and start == 0 and shuffle:
  115. perm0 = numpy.arange(self._num_examples)
  116. numpy.random.shuffle(perm0)
  117. self._images = self.images[perm0]
  118. self._labels = self.labels[perm0]
  119. # Go to the next epoch
  120. if start + batch_size > self._num_examples:
  121. # Finished epoch
  122. self._epochs_completed += 1
  123. # Get the rest examples in this epoch
  124. rest_num_examples = self._num_examples - start
  125. images_rest_part = self._images[start:self._num_examples]
  126. labels_rest_part = self._labels[start:self._num_examples]
  127. # Shuffle the data
  128. if shuffle:
  129. perm = numpy.arange(self._num_examples)
  130. numpy.random.shuffle(perm)
  131. self._images = self.images[perm]
  132. self._labels = self.labels[perm]
  133. # Start next epoch
  134. start = 0
  135. self._index_in_epoch = batch_size - rest_num_examples
  136. end = self._index_in_epoch
  137. images_new_part = self._images[start:end]
  138. labels_new_part = self._labels[start:end]
  139. return numpy.concatenate((images_rest_part, images_new_part), axis=0) , numpy.concatenate((labels_rest_part, labels_new_part), axis=0)
  140. else:
  141. self._index_in_epoch += batch_size
  142. end = self._index_in_epoch
  143. return self._images[start:end], self._labels[start:end]
  144.  
  145. ########
  146. def next_batch(self):
  147. """The `NextQueuedSequenceBatch` providing access to batched output data.
  148. Also provides access to the `state` and `save_state` methods.
  149. The first time this gets called, it additionally prepares barrier reads
  150. and creates `NextQueuedSequenceBatch` / next_batch objects. Subsequent
  151. calls simply return the previously created `next_batch`.
  152. In order to access data in `next_batch` without blocking, the `prefetch_op`
  153. must have been run at least `batch_size` times (ideally in a separate
  154. thread, or launched via a `QueueRunner`). After processing a segment in
  155. `next_batch()`, `batch.save_state()` must be called which is done by the
  156. state_saving_rnn. Without this call, the dequeue op associated with the SQSS
  157. will not run.
  158. Returns:
  159. A cached `NextQueuedSequenceBatch` instance.
  160. """
  161. # This is needed to prevent errors if next_batch is called before
  162. # prefetch_op is created.
  163. if not self._prefetch_op:
  164. with ops.name_scope(None), ops.name_scope(
  165. self._scope, values=[self._barrier.barrier_ref]):
  166. self._create_prefetch_op()
  167. if not self._next_batch:
  168. with ops.name_scope(None), ops.name_scope(
  169. self._scope, values=[self._barrier.barrier_ref]):
  170. self._prepare_barrier_reads()
  171. return self._next_batch
  172.  
  173.  
  174. for _ in range(1000):
  175. #batch_xs, batch_ys = training_data.next_batch(100)
  176. batch_xs, batch_ys = training_images.next_batch(100)
  177. sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
  178. correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
  179. correct_prediction = tf.equal(training_images, training_labels)
  180. accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
  181. print(sess.run(accuracy, feed_dict={x: test_images, y_: test_labels}))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement