Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- training_size = 300
- img_size = 20*20*3
- #class Struct:
- # "A structure that can have any fields defined."
- # def __init__(self, **entries): self.__dict__.update(entries)
- #training_images=[];
- #training_labels=[];
- #training_data= Struct(training_set=training_images, labels=training_labels)
- training_images = np.empty(shape=(training_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- training_images[i] = image
- i+=1
- print(training_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- training_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(training_labels)
- #################################################### test
- test_size = 300
- img_size = 20*20*3
- #class Struct:
- # "A structure that can have any fields defined."
- # def __init__(self, **entries): self.__dict__.update(entries)
- #test_images=[];
- #test_labels=[];
- #test_data= Struct(training_set=test_images, labels=test_labels)
- test_images = np.empty(shape=(test_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- test_images[i] = image
- i+=1
- print(test_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- test_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(test_labels)
- #################################################### test
- test_size = 300
- img_size = 20*20*3
- #class Struct:
- # "A structure that can have any fields defined."
- # def __init__(self, **entries): self.__dict__.update(entries)
- #test_images=[];
- #test_labels=[];
- #test_data= Struct(training_set=test_images, labels=test_labels)
- test_images = np.empty(shape=(test_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- test_images[i] = image
- i+=1
- print(test_images[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- test_labels = tf.one_hot(a,3)
- sess = tf.Session()
- sess.run(test_labels)
- #Similar to MNIST
- x = tf.placeholder(tf.float64, [None, img_size])
- W = tf.Variable(tf.zeros([img_size, 3], dtype=tf.float64))
- b = tf.Variable(tf.zeros([3], dtype=tf.float64))
- y = tf.nn.softmax(tf.matmul(x, W) + b)
- y_ = tf.placeholder(tf.float64, [None, 3])
- cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
- train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
- sess = tf.InteractiveSession()
- #tf.global_variables_initializer().run()
- tf.local_variables_initializer().run()
- def next_batch(self, batch_size, fake_data=False, shuffle=True):
- """Return the next `batch_size` examples from this data set."""
- if fake_data:
- fake_image = [1] * 784
- if self.one_hot:
- fake_label = [1] + [0] * 9
- else:
- fake_label = 0
- return [fake_image for _ in xrange(batch_size)], [
- fake_label for _ in xrange(batch_size)
- ]
- start = self._index_in_epoch
- # Shuffle for the first epoch
- if self._epochs_completed == 0 and start == 0 and shuffle:
- perm0 = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm0)
- self._images = self.images[perm0]
- self._labels = self.labels[perm0]
- # Go to the next epoch
- if start + batch_size > self._num_examples:
- # Finished epoch
- self._epochs_completed += 1
- # Get the rest examples in this epoch
- rest_num_examples = self._num_examples - start
- images_rest_part = self._images[start:self._num_examples]
- labels_rest_part = self._labels[start:self._num_examples]
- # Shuffle the data
- if shuffle:
- perm = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm)
- self._images = self.images[perm]
- self._labels = self.labels[perm]
- # Start next epoch
- start = 0
- self._index_in_epoch = batch_size - rest_num_examples
- end = self._index_in_epoch
- images_new_part = self._images[start:end]
- labels_new_part = self._labels[start:end]
- return numpy.concatenate((images_rest_part, images_new_part), axis=0) , numpy.concatenate((labels_rest_part, labels_new_part), axis=0)
- else:
- self._index_in_epoch += batch_size
- end = self._index_in_epoch
- return self._images[start:end], self._labels[start:end]
- ########
- def next_batch(self):
- """The `NextQueuedSequenceBatch` providing access to batched output data.
- Also provides access to the `state` and `save_state` methods.
- The first time this gets called, it additionally prepares barrier reads
- and creates `NextQueuedSequenceBatch` / next_batch objects. Subsequent
- calls simply return the previously created `next_batch`.
- In order to access data in `next_batch` without blocking, the `prefetch_op`
- must have been run at least `batch_size` times (ideally in a separate
- thread, or launched via a `QueueRunner`). After processing a segment in
- `next_batch()`, `batch.save_state()` must be called which is done by the
- state_saving_rnn. Without this call, the dequeue op associated with the SQSS
- will not run.
- Returns:
- A cached `NextQueuedSequenceBatch` instance.
- """
- # This is needed to prevent errors if next_batch is called before
- # prefetch_op is created.
- if not self._prefetch_op:
- with ops.name_scope(None), ops.name_scope(
- self._scope, values=[self._barrier.barrier_ref]):
- self._create_prefetch_op()
- if not self._next_batch:
- with ops.name_scope(None), ops.name_scope(
- self._scope, values=[self._barrier.barrier_ref]):
- self._prepare_barrier_reads()
- return self._next_batch
- for _ in range(1000):
- #batch_xs, batch_ys = training_data.next_batch(100)
- batch_xs, batch_ys = training_images.next_batch(100)
- sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
- correct_prediction = tf.equal(training_images, training_labels)
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
- print(sess.run(accuracy, feed_dict={x: test_images, y_: test_labels}))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement