Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # backprop.py
- # Back-Propagation Neural Networks
- #
- # Written in Python. See http://www.python.org/
- # Placed in the public domain.
- # Neil Schemenauer <nas@arctrix.com>
- import math
- import random
- import string
- # random.seed(0)
- # calculate a random number where: a <= rand < b
- def rand(a, b):
- return (b-a)*random.random() + a
- # Make a matrix (we could use NumPy to speed this up)
- def makeMatrix(I, J, fill=0.0):
- m = []
- for i in range(I):
- m.append([fill]*J)
- return m
- # our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
- def sigmoid(x):
- return math.tanh(x)
- # derivative of our sigmoid function, in terms of the output (i.e. y)
- def dsigmoid(y):
- return 1.0 - y**2
- class NN:
- def __init__(self, ni, nh, no):
- # number of input, hidden, and output nodes
- self.ni = ni + 1 # +1 for bias node
- self.nh = nh
- self.no = no
- # activations for nodes
- self.ai = [1.0]*self.ni
- self.ah = [1.0]*self.nh
- self.ao = [1.0]*self.no
- # create weights
- self.wi = makeMatrix(self.ni, self.nh)
- self.wo = makeMatrix(self.nh, self.no)
- # set them to random vaules
- for i in range(self.ni):
- for j in range(self.nh):
- self.wi[i][j] = rand(-0.2, 0.2)
- for j in range(self.nh):
- for k in range(self.no):
- self.wo[j][k] = rand(-2.0, 2.0)
- # last change in weights for momentum
- self.ci = makeMatrix(self.ni, self.nh)
- self.co = makeMatrix(self.nh, self.no)
- def update(self, inputs):
- if len(inputs) != self.ni-1:
- raise ValueError, 'wrong number of inputs'
- # input activations
- for i in range(self.ni-1):
- #self.ai[i] = sigmoid(inputs[i])
- self.ai[i] = inputs[i]
- # hidden activations
- for j in range(self.nh):
- summ = 0.0
- for i in range(self.ni):
- summ = summ + self.ai[i] * self.wi[i][j]
- self.ah[j] = sigmoid(summ)
- # output activations
- for k in range(self.no):
- summ = 0.0
- for j in range(self.nh):
- summ = summ + self.ah[j] * self.wo[j][k]
- self.ao[k] = sigmoid(summ)
- return self.ao[:]
- def backPropagate(self, targets, N, M):
- if len(targets) != self.no:
- raise ValueError, 'wrong number of target values'
- # calculate error terms for output
- output_deltas = [0.0] * self.no
- for k in range(self.no):
- error = targets[k]-self.ao[k]
- output_deltas[k] = dsigmoid(self.ao[k]) * error
- # calculate error terms for hidden
- hidden_deltas = [0.0] * self.nh
- for j in range(self.nh):
- error = 0.0
- for k in range(self.no):
- error = error + output_deltas[k]*self.wo[j][k]
- hidden_deltas[j] = dsigmoid(self.ah[j]) * error
- # update output weights
- for j in range(self.nh):
- for k in range(self.no):
- change = output_deltas[k]*self.ah[j]
- self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
- self.co[j][k] = change
- #print N*change, M*self.co[j][k]
- # update input weights
- for i in range(self.ni):
- for j in range(self.nh):
- change = hidden_deltas[j]*self.ai[i]
- self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
- self.ci[i][j] = change
- # calculate error
- error = 0.0
- for k in range(len(targets)):
- error = error + 0.5*(targets[k]-self.ao[k])**2
- return error
- def test(self, patterns):
- for p in patterns:
- print p[0], '->', self.update(p[0])
- def weights(self):
- print 'Input weights:'
- for i in range(self.ni):
- print self.wi[i]
- print
- print 'Output weights:'
- for j in range(self.nh):
- print self.wo[j]
- def train(self, patterns, iterations=1000, N=0.5, M=0.1):
- # N: learning rate
- # M: momentum factor
- for i in xrange(iterations):
- error = 0.0
- for p in patterns:
- inputs = p[0]
- targets = p[1]
- self.update(inputs)
- error = error + self.backPropagate(targets, N, M)
- if i % 100 == 0:
- pass #print 'error %-14f' % error
- def demo():
- # Teach network XOR function
- pat = [
- [[0,0,0], [0]],
- [[0,0,1], [0]],
- [[0,1,1], [0]],
- [[1,1,0], [0]],
- [[1,1,1], [0]],
- [[0,1,0], [1]],
- [[1,0,1], [1]],
- [[1,0,0], [1]]
- ]
- # create a network with two input, two hidden, and one output nodes
- n = NN(3, 2, 1)
- # train it with some patterns
- n.train(pat)
- # test it
- n.test(pat)
- if __name__ == '__main__':
- demo()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement