Advertisement
Guest User

Price at EPS reporting

a guest
Dec 30th, 2018
283
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 4.87 KB | None | 0 0
  1. # -*- coding: utf-8 -*-
  2. """
  3. This downloads the price at each point in time of the eps
  4. V.02 - So failed to downlaod the prices from yahoo, some wierd bug
  5. - fixed by just using the new python.
  6. Trying to add something to make the code time out after say 10 seconds
  7. -------------------------
  8. 2018-01-24: need to put in an error report to show where price has not been brought back
  9. 2018-08-27: Change to make pandas_datareader work, line 21-23
  10. 2018-10/16: install data reader with "pip install pandas-datareader"
  11. """
  12. import time
  13. import pandas as pd
  14. import pytz
  15. from os import chdir
  16. #from pandas.io.data import DataReader
  17. #import pandas.io.data as web
  18. from datetime import datetime
  19. #fix for yahoo change
  20. #https://stackoverflow.com/questions/50394873/import-pandas-datareader-gives-importerror-cannot-import-name-is-list-like
  21. #fix for is lik error
  22. pd.core.common.is_list_like = pd.api.types.is_list_like
  23. import pandas_datareader.data as web ##NB! - PIP install this
  24. #f = web.DataReader("F", 'yahoo', start, end)
  25.  
  26.  
  27. #chdir("C:\\Python27\\tst")
  28. chdir("C:\\User\\Investment\\Mkt_Val_Model")
  29. epsdf = pd.read_csv("FinDat\\EpsSum01.csv",index_col=0) #, index_col=False
  30.  
  31. #mapping table for months
  32. daysdf = pd.DataFrame([31,28,31,30,31,30,31,31,30,31,30,31],
  33.                       index=['01','02','03','04','05','06','07',
  34.                       '08','09','10','11','12'],columns=['days'])
  35.  
  36. #pull out the list of all stocks in the index
  37. StockList = list(epsdf.index)
  38. #--------------------this pulls out the price for a day----------------
  39. """
  40. This could be a function? what this is doing:
  41. 1.Pulls out a list of the current stock, with relevant headings
  42. 2.assigns the current date, starting with last day of month per mapping table
  43. 3. if len of data container is = 0 then it continues to try the previous day
  44. 4. it stops when it finds data, and stores it in the price[] list container.
  45. 5. it looks over the last five years to do this (there might be an error
  46. on this if a stock has less than 5 years data)
  47. """
  48. #create the big df to store all the data
  49. AveTimeStart = time.time()
  50. bigdf = pd.DataFrame(columns=['e1','e2','e3','e4','e5','p1','p2','p3','p4','p5'])
  51. for z in range(1988,len(StockList)): #
  52.   print "Number %r of %r" %(z,len(StockList))
  53.   #just a particular line
  54.   stName = StockList[z]
  55.   CurStock = epsdf.loc[[stName]].dropna(axis=1,how='all')
  56.   #start on -2
  57.   #loop cycling through the last 5 years
  58.   price = []#list to hold the prices
  59.   start = time.time() #record the time for the process
  60.  
  61.   for j in range(0,5):  
  62.     while (time.time() - start < 60):  #so give it 60 seconds to complete?
  63.         try: #try 1
  64.           day = int(daysdf['days'][CurStock.columns[-(6-j):][0][5:]])
  65.           #loop to try download the data give it 5 tries counting back
  66.           data = [] #reset the data container
  67.           for i in range(0,4):
  68.                 START = datetime(int(CurStock.columns[-(6-j):][0][:4])
  69.                                 ,int(CurStock.columns[-(6-j):][0][5:])
  70.                                 ,day
  71.                                 , 0, 0, 0, 0, pytz.utc) #year month day
  72.                 #Try download the data
  73.                 try:
  74.                   data = web.DataReader(stName, 'yahoo', START, START)
  75.                 except:
  76.                   pass
  77.                 day -= 1 #decrement the day
  78.                 if len(data) > 0: #if it brings back data exit the loop
  79.                   break
  80.            
  81.           #store the data in a list
  82.           try:    #try 2
  83.             price.append(data['Close'][0])
  84.           except: #try 2
  85.             pass
  86.         except: #try 1
  87.           pass
  88.         if len(price) == j+1: #So this looks at the case where it returns nothing
  89.             break
  90.   #-----------------------------Status report---------------------------------
  91.   AveTime = (time.time() - AveTimeStart) / (z+1)      
  92.   print "%r time to harvest: %r Sec- Ave time: %r Sec- Time left: %r min/ %r hr " % (StockList[z],round(time.time() - start,2),
  93.             round(AveTime,2), round(AveTime*(len(StockList)-z)/60,2),round(AveTime*(len(StockList)-z)/60/60,2))
  94.  
  95.   #save the EPS and price in new DF#################
  96.   CurStock2 = CurStock.copy()
  97.   ColLen = len(CurStock2.columns)
  98.   epsList = [] #create a list to hold the EPS
  99.   for i in range(0,5):
  100.     try:
  101.       epsList.append(CurStock2.loc[stName][ColLen-6+i])#so this picks a column by number
  102.     except:
  103.       epsList.append(0) #just incase there is not 5 years data?
  104.   #combine the eps & price
  105.   combList = epsList + price
  106.   Analdf = pd.DataFrame(columns=['e1','e2','e3','e4','e5','p1','p2','p3','p4','p5'],
  107.                         index=[stName])
  108.   #populate the dataframe
  109.   for i in range(0,len(combList)):
  110.     Analdf[Analdf.columns[i]] = combList[i]
  111.   #add the data to the big df
  112.   bigdf = bigdf.append(Analdf)
  113.   #---------------Save the file down----------------
  114.   bigdf.to_csv("FinDat\\PriceEPSDat01.csv")
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement