Advertisement
Guest User

Untitled

a guest
Jan 24th, 2025
1,838
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 13.29 KB | None | 0 0
  1.  
  2. ```
  3. 7 experts at 2bit are equivalent to 8 GB worth model weights.
  4.  
  5.  
  6. I use an NVMe SSD (western digital sn850x 2TB) the bandwidth of my SSD is 7.3 GB/s
  7.  
  8. When I run the model, I believe the shared expert is run in RAM, leaving only 7 out of 8 active experts loading from SSD each forward pass. (37B - > 32B)
  9.  
  10. The model is 2bit: (IQ2XXS the deepseek r1 model is specifically 2.08 BPW) and this leaves us with 32÷4=8GB worth of active parameter weights.
  11.  
  12. This is why I can get 1 t/s without swap. I have removed and disabled swapfile entirely. (htop display is 0k/0k) nothing is loaded into vram, I built without cuda support.
  13. ```
  14.  
  15.  
  16. bin/llama-cli -m /home/user/Storage/DeepSeek-R1-IQ2_XXS-00001-of-00005.gguf -p "here's an intresting experiment:"
  17. build: 4447 (f7cd1330) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
  18. main: llama backend init
  19. main: load the model and apply lora adapter, if any
  20. llama_model_loader: additional 4 GGUFs metadata loaded.
  21. llama_model_loader: loaded meta data with 51 key-value pairs and 1025 tensors from /home/user/Storage/DeepSeek-R1-IQ2_XXS-00001-of-00005.gguf (version GGUF V3 (latest))
  22. llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
  23. llama_model_loader: - kv 0: general.architecture str = deepseek2
  24. llama_model_loader: - kv 1: general.type str = model
  25. llama_model_loader: - kv 2: general.name str = DeepSeek R1
  26. llama_model_loader: - kv 3: general.size_label str = 256x20B
  27. llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
  28. llama_model_loader: - kv 5: deepseek2.block_count u32 = 61
  29. llama_model_loader: - kv 6: deepseek2.context_length u32 = 163840
  30. llama_model_loader: - kv 7: deepseek2.embedding_length u32 = 7168
  31. llama_model_loader: - kv 8: deepseek2.feed_forward_length u32 = 18432
  32. llama_model_loader: - kv 9: deepseek2.attention.head_count u32 = 128
  33. llama_model_loader: - kv 10: deepseek2.attention.head_count_kv u32 = 128
  34. llama_model_loader: - kv 11: deepseek2.rope.freq_base f32 = 10000.000000
  35. llama_model_loader: - kv 12: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
  36. llama_model_loader: - kv 13: deepseek2.expert_used_count u32 = 8
  37. llama_model_loader: - kv 14: deepseek2.leading_dense_block_count u32 = 3
  38. llama_model_loader: - kv 15: deepseek2.vocab_size u32 = 129280
  39. llama_model_loader: - kv 16: deepseek2.attention.q_lora_rank u32 = 1536
  40. llama_model_loader: - kv 17: deepseek2.attention.kv_lora_rank u32 = 512
  41. llama_model_loader: - kv 18: deepseek2.attention.key_length u32 = 192
  42. llama_model_loader: - kv 19: deepseek2.attention.value_length u32 = 128
  43. llama_model_loader: - kv 20: deepseek2.expert_feed_forward_length u32 = 2048
  44. llama_model_loader: - kv 21: deepseek2.expert_count u32 = 256
  45. llama_model_loader: - kv 22: deepseek2.expert_shared_count u32 = 1
  46. llama_model_loader: - kv 23: deepseek2.expert_weights_scale f32 = 2.500000
  47. llama_model_loader: - kv 24: deepseek2.expert_weights_norm bool = true
  48. llama_model_loader: - kv 25: deepseek2.expert_gating_func u32 = 2
  49. llama_model_loader: - kv 26: deepseek2.rope.dimension_count u32 = 64
  50. llama_model_loader: - kv 27: deepseek2.rope.scaling.type str = yarn
  51. llama_model_loader: - kv 28: deepseek2.rope.scaling.factor f32 = 40.000000
  52. llama_model_loader: - kv 29: deepseek2.rope.scaling.original_context_length u32 = 4096
  53. llama_model_loader: - kv 30: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.100000
  54. llama_model_loader: - kv 31: tokenizer.ggml.model str = gpt2
  55. llama_model_loader: - kv 32: tokenizer.ggml.pre str = deepseek-v3
  56. llama_model_loader: - kv 33: tokenizer.ggml.tokens arr[str,129280] = ["<|begin▁of▁sentence|>", "<�...
  57. llama_model_loader: - kv 34: tokenizer.ggml.token_type arr[i32,129280] = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  58. llama_model_loader: - kv 35: tokenizer.ggml.merges arr[str,127741] = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
  59. llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 0
  60. llama_model_loader: - kv 37: tokenizer.ggml.eos_token_id u32 = 1
  61. llama_model_loader: - kv 38: tokenizer.ggml.padding_token_id u32 = 1
  62. llama_model_loader: - kv 39: tokenizer.ggml.add_bos_token bool = true
  63. llama_model_loader: - kv 40: tokenizer.ggml.add_eos_token bool = false
  64. llama_model_loader: - kv 41: tokenizer.chat_template str = {% if not add_generation_prompt is de...
  65. llama_model_loader: - kv 42: general.quantization_version u32 = 2
  66. llama_model_loader: - kv 43: general.file_type u32 = 19
  67. llama_model_loader: - kv 44: quantize.imatrix.file str = /models_out/DeepSeek-R1-GGUF/DeepSeek...
  68. llama_model_loader: - kv 45: quantize.imatrix.dataset str = /training_data/calibration_datav3.txt
  69. llama_model_loader: - kv 46: quantize.imatrix.entries_count i32 = 720
  70. llama_model_loader: - kv 47: quantize.imatrix.chunks_count i32 = 124
  71. llama_model_loader: - kv 48: split.no u16 = 0
  72. llama_model_loader: - kv 49: split.tensors.count i32 = 1025
  73. llama_model_loader: - kv 50: split.count u16 = 5
  74. llama_model_loader: - type f32: 361 tensors
  75. llama_model_loader: - type q2_K: 8 tensors
  76. llama_model_loader: - type q5_K: 1 tensors
  77. llama_model_loader: - type iq2_xxs: 655 tensors
  78. llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
  79. llm_load_vocab: special tokens cache size = 818
  80. llm_load_vocab: token to piece cache size = 0.8223 MB
  81. llm_load_print_meta: format = GGUF V3 (latest)
  82. llm_load_print_meta: arch = deepseek2
  83. llm_load_print_meta: vocab type = BPE
  84. llm_load_print_meta: n_vocab = 129280
  85. llm_load_print_meta: n_merges = 127741
  86. llm_load_print_meta: vocab_only = 0
  87. llm_load_print_meta: n_ctx_train = 163840
  88. llm_load_print_meta: n_embd = 7168
  89. llm_load_print_meta: n_layer = 61
  90. llm_load_print_meta: n_head = 128
  91. llm_load_print_meta: n_head_kv = 128
  92. llm_load_print_meta: n_rot = 64
  93. llm_load_print_meta: n_swa = 0
  94. llm_load_print_meta: n_embd_head_k = 192
  95. llm_load_print_meta: n_embd_head_v = 128
  96. llm_load_print_meta: n_gqa = 1
  97. llm_load_print_meta: n_embd_k_gqa = 24576
  98. llm_load_print_meta: n_embd_v_gqa = 16384
  99. llm_load_print_meta: f_norm_eps = 0.0e+00
  100. llm_load_print_meta: f_norm_rms_eps = 1.0e-06
  101. llm_load_print_meta: f_clamp_kqv = 0.0e+00
  102. llm_load_print_meta: f_max_alibi_bias = 0.0e+00
  103. llm_load_print_meta: f_logit_scale = 0.0e+00
  104. llm_load_print_meta: n_ff = 18432
  105. llm_load_print_meta: n_expert = 256
  106. llm_load_print_meta: n_expert_used = 8
  107. llm_load_print_meta: causal attn = 1
  108. llm_load_print_meta: pooling type = 0
  109. llm_load_print_meta: rope type = 0
  110. llm_load_print_meta: rope scaling = yarn
  111. llm_load_print_meta: freq_base_train = 10000.0
  112. llm_load_print_meta: freq_scale_train = 0.025
  113. llm_load_print_meta: n_ctx_orig_yarn = 4096
  114. llm_load_print_meta: rope_finetuned = unknown
  115. llm_load_print_meta: ssm_d_conv = 0
  116. llm_load_print_meta: ssm_d_inner = 0
  117. llm_load_print_meta: ssm_d_state = 0
  118. llm_load_print_meta: ssm_dt_rank = 0
  119. llm_load_print_meta: ssm_dt_b_c_rms = 0
  120. llm_load_print_meta: model type = 671B
  121. llm_load_print_meta: model ftype = IQ2_XXS - 2.0625 bpw
  122. llm_load_print_meta: model params = 671.03 B
  123. llm_load_print_meta: model size = 162.44 GiB (2.08 BPW)
  124. llm_load_print_meta: general.name = DeepSeek R1
  125. llm_load_print_meta: BOS token = 0 '<|begin▁of▁sentence|>'
  126. llm_load_print_meta: EOS token = 1 '<|end▁of▁sentence|>'
  127. llm_load_print_meta: EOT token = 1 '<|end▁of▁sentence|>'
  128. llm_load_print_meta: PAD token = 1 '<|end▁of▁sentence|>'
  129. llm_load_print_meta: LF token = 131 'Ä'
  130. llm_load_print_meta: FIM PRE token = 128801 '<|fim▁begin|>'
  131. llm_load_print_meta: FIM SUF token = 128800 '<|fim▁hole|>'
  132. llm_load_print_meta: FIM MID token = 128802 '<|fim▁end|>'
  133. llm_load_print_meta: EOG token = 1 '<|end▁of▁sentence|>'
  134. llm_load_print_meta: max token length = 256
  135. llm_load_print_meta: n_layer_dense_lead = 3
  136. llm_load_print_meta: n_lora_q = 1536
  137. llm_load_print_meta: n_lora_kv = 512
  138. llm_load_print_meta: n_ff_exp = 2048
  139. llm_load_print_meta: n_expert_shared = 1
  140. llm_load_print_meta: expert_weights_scale = 2.5
  141. llm_load_print_meta: expert_weights_norm = 1
  142. llm_load_print_meta: expert_gating_func = sigmoid
  143. llm_load_print_meta: rope_yarn_log_mul = 0.1000
  144. llm_load_tensors: CPU_Mapped model buffer size = 37799.72 MiB
  145. llm_load_tensors: CPU_Mapped model buffer size = 37840.28 MiB
  146. llm_load_tensors: CPU_Mapped model buffer size = 37794.24 MiB
  147. llm_load_tensors: CPU_Mapped model buffer size = 37801.27 MiB
  148. llm_load_tensors: CPU_Mapped model buffer size = 15107.08 MiB
  149. ....................................................................................................
  150. llama_new_context_with_model: n_seq_max = 1
  151. llama_new_context_with_model: n_ctx = 4096
  152. llama_new_context_with_model: n_ctx_per_seq = 4096
  153. llama_new_context_with_model: n_batch = 2048
  154. llama_new_context_with_model: n_ubatch = 512
  155. llama_new_context_with_model: flash_attn = 0
  156. llama_new_context_with_model: freq_base = 10000.0
  157. llama_new_context_with_model: freq_scale = 0.025
  158. llama_new_context_with_model: n_ctx_per_seq (4096) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
  159. llama_kv_cache_init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 61, can_shift = 0
  160. llama_kv_cache_init: CPU KV buffer size = 19520.00 MiB
  161. llama_new_context_with_model: KV self size = 19520.00 MiB, K (f16): 11712.00 MiB, V (f16): 7808.00 MiB
  162. llama_new_context_with_model: CPU output buffer size = 0.49 MiB
  163. llama_new_context_with_model: CPU compute buffer size = 1186.01 MiB
  164. llama_new_context_with_model: graph nodes = 5025
  165. llama_new_context_with_model: graph splits = 1
  166. common_init_from_params: KV cache shifting is not supported for this model, disabling KV cache shifting
  167. common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
  168. common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
  169. main: llama threadpool init, n_threads = 16
  170.  
  171. system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
  172.  
  173. sampler seed: 3369376391
  174. sampler params:
  175. repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
  176. dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
  177. top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
  178. mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
  179. sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
  180. generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
  181.  
  182. here's an intresting experiment: let's take a small sample of the dataset and check what's inside. Let's start with the first example.
  183.  
  184. In [1]:
  185. from __future__ import print_function
  186.  
  187. import json
  188.  
  189. with open("data/sherlock_holmes_1.json") as f:
  190. first_example = json.load(f)
  191.  
  192. print(first_example.keys())
  193. print()
  194. print("Title:", first
  195. llama_perf_sampler_print: sampling time = 8.98 ms / 86 runs ( 0.10 ms per token, 9577.90 tokens per second)
  196. llama_perf_context_print: load time = 87451.86 ms
  197. llama_perf_context_print: prompt eval time = 8725.74 ms / 9 tokens ( 969.53 ms per token, 1.03 tokens per second)
  198. llama_perf_context_print: eval time = 74440.10 ms / 76 runs ( 979.48 ms per token, 1.02 tokens per second)
  199. llama_perf_context_print: total time = 83671.35 ms / 85 tokens
  200.  
  201.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement