Advertisement
Guest User

original.c

a guest
Dec 13th, 2018
369
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 100.36 KB | None | 0 0
  1. /* $OpenBSD: sshkey.c,v 1.41 2016/10/24 01:09:17 dtucker Exp $ */
  2. /*
  3. * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
  4. * Copyright (c) 2008 Alexander von Gernler. All rights reserved.
  5. * Copyright (c) 2010,2011 Damien Miller. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  17. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  18. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  19. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  20. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  22. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  23. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27.  
  28. #include "includes.h"
  29.  
  30. #include <sys/types.h>
  31. #include <netinet/in.h>
  32.  
  33. #ifdef WITH_OPENSSL
  34. #include <openssl/evp.h>
  35. #include <openssl/err.h>
  36. #include <openssl/pem.h>
  37. #endif
  38.  
  39. #include "crypto_api.h"
  40.  
  41. #include <errno.h>
  42. #include <limits.h>
  43. #include <stdio.h>
  44. #include <string.h>
  45. #include <resolv.h>
  46. #ifdef HAVE_UTIL_H
  47. #include <util.h>
  48. #endif /* HAVE_UTIL_H */
  49.  
  50. #include "ssh2.h"
  51. #include "ssherr.h"
  52. #include "misc.h"
  53. #include "sshbuf.h"
  54. #include "rsa.h"
  55. #include "cipher.h"
  56. #include "digest.h"
  57. #define SSHKEY_INTERNAL
  58. #include "sshkey.h"
  59. #include "match.h"
  60.  
  61. /* openssh private key file format */
  62. #define MARK_BEGIN "-----BEGIN OPENSSH PRIVATE KEY-----\n"
  63. #define MARK_END "-----END OPENSSH PRIVATE KEY-----\n"
  64. #define MARK_BEGIN_LEN (sizeof(MARK_BEGIN) - 1)
  65. #define MARK_END_LEN (sizeof(MARK_END) - 1)
  66. #define KDFNAME "bcrypt"
  67. #define AUTH_MAGIC "openssh-key-v1"
  68. #define SALT_LEN 16
  69. #define DEFAULT_CIPHERNAME "aes256-cbc"
  70. #define DEFAULT_ROUNDS 16
  71.  
  72. /* Version identification string for SSH v1 identity files. */
  73. #define LEGACY_BEGIN "SSH PRIVATE KEY FILE FORMAT 1.1\n"
  74.  
  75. static int sshkey_from_blob_internal(struct sshbuf *buf,
  76. struct sshkey **keyp, int allow_cert);
  77.  
  78. /* Supported key types */
  79. struct keytype {
  80. const char *name;
  81. const char *shortname;
  82. int type;
  83. int nid;
  84. int cert;
  85. int sigonly;
  86. };
  87. static const struct keytype keytypes[] = {
  88. { "ssh-ed25519", "ED25519", KEY_ED25519, 0, 0, 0 },
  89. { "ssh-ed25519-cert-v01@openssh.com", "ED25519-CERT",
  90. KEY_ED25519_CERT, 0, 1, 0 },
  91. #ifdef WITH_OPENSSL
  92. { NULL, "RSA1", KEY_RSA1, 0, 0, 0 },
  93. { "ssh-rsa", "RSA", KEY_RSA, 0, 0, 0 },
  94. { "rsa-sha2-256", "RSA", KEY_RSA, 0, 0, 1 },
  95. { "rsa-sha2-512", "RSA", KEY_RSA, 0, 0, 1 },
  96. { "ssh-dss", "DSA", KEY_DSA, 0, 0, 0 },
  97. # ifdef OPENSSL_HAS_ECC
  98. { "ecdsa-sha2-nistp256", "ECDSA", KEY_ECDSA, NID_X9_62_prime256v1, 0, 0 },
  99. { "ecdsa-sha2-nistp384", "ECDSA", KEY_ECDSA, NID_secp384r1, 0, 0 },
  100. # ifdef OPENSSL_HAS_NISTP521
  101. { "ecdsa-sha2-nistp521", "ECDSA", KEY_ECDSA, NID_secp521r1, 0, 0 },
  102. # endif /* OPENSSL_HAS_NISTP521 */
  103. # endif /* OPENSSL_HAS_ECC */
  104. { "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", KEY_RSA_CERT, 0, 1, 0 },
  105. { "ssh-dss-cert-v01@openssh.com", "DSA-CERT", KEY_DSA_CERT, 0, 1, 0 },
  106. # ifdef OPENSSL_HAS_ECC
  107. { "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT",
  108. KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1, 0 },
  109. { "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT",
  110. KEY_ECDSA_CERT, NID_secp384r1, 1, 0 },
  111. # ifdef OPENSSL_HAS_NISTP521
  112. { "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT",
  113. KEY_ECDSA_CERT, NID_secp521r1, 1, 0 },
  114. # endif /* OPENSSL_HAS_NISTP521 */
  115. # endif /* OPENSSL_HAS_ECC */
  116. #endif /* WITH_OPENSSL */
  117. { NULL, NULL, -1, -1, 0, 0 }
  118. };
  119.  
  120. const char *
  121. sshkey_type(const struct sshkey *k)
  122. {
  123. const struct keytype *kt;
  124.  
  125. for (kt = keytypes; kt->type != -1; kt++) {
  126. if (kt->type == k->type)
  127. return kt->shortname;
  128. }
  129. return "unknown";
  130. }
  131.  
  132. static const char *
  133. sshkey_ssh_name_from_type_nid(int type, int nid)
  134. {
  135. const struct keytype *kt;
  136.  
  137. for (kt = keytypes; kt->type != -1; kt++) {
  138. if (kt->type == type && (kt->nid == 0 || kt->nid == nid))
  139. return kt->name;
  140. }
  141. return "ssh-unknown";
  142. }
  143.  
  144. int
  145. sshkey_type_is_cert(int type)
  146. {
  147. const struct keytype *kt;
  148.  
  149. for (kt = keytypes; kt->type != -1; kt++) {
  150. if (kt->type == type)
  151. return kt->cert;
  152. }
  153. return 0;
  154. }
  155.  
  156. const char *
  157. sshkey_ssh_name(const struct sshkey *k)
  158. {
  159. return sshkey_ssh_name_from_type_nid(k->type, k->ecdsa_nid);
  160. }
  161.  
  162. const char *
  163. sshkey_ssh_name_plain(const struct sshkey *k)
  164. {
  165. return sshkey_ssh_name_from_type_nid(sshkey_type_plain(k->type),
  166. k->ecdsa_nid);
  167. }
  168.  
  169. int
  170. sshkey_type_from_name(const char *name)
  171. {
  172. const struct keytype *kt;
  173.  
  174. for (kt = keytypes; kt->type != -1; kt++) {
  175. /* Only allow shortname matches for plain key types */
  176. if ((kt->name != NULL && strcmp(name, kt->name) == 0) ||
  177. (!kt->cert && strcasecmp(kt->shortname, name) == 0))
  178. return kt->type;
  179. }
  180. return KEY_UNSPEC;
  181. }
  182.  
  183. int
  184. sshkey_ecdsa_nid_from_name(const char *name)
  185. {
  186. const struct keytype *kt;
  187.  
  188. for (kt = keytypes; kt->type != -1; kt++) {
  189. if (kt->type != KEY_ECDSA && kt->type != KEY_ECDSA_CERT)
  190. continue;
  191. if (kt->name != NULL && strcmp(name, kt->name) == 0)
  192. return kt->nid;
  193. }
  194. return -1;
  195. }
  196.  
  197. char *
  198. sshkey_alg_list(int certs_only, int plain_only, char sep)
  199. {
  200. char *tmp, *ret = NULL;
  201. size_t nlen, rlen = 0;
  202. const struct keytype *kt;
  203.  
  204. for (kt = keytypes; kt->type != -1; kt++) {
  205. if (kt->name == NULL || kt->sigonly)
  206. continue;
  207. if ((certs_only && !kt->cert) || (plain_only && kt->cert))
  208. continue;
  209. if (ret != NULL)
  210. ret[rlen++] = sep;
  211. nlen = strlen(kt->name);
  212. if ((tmp = realloc(ret, rlen + nlen + 2)) == NULL) {
  213. free(ret);
  214. return NULL;
  215. }
  216. ret = tmp;
  217. memcpy(ret + rlen, kt->name, nlen + 1);
  218. rlen += nlen;
  219. }
  220. return ret;
  221. }
  222.  
  223. int
  224. sshkey_names_valid2(const char *names, int allow_wildcard)
  225. {
  226. char *s, *cp, *p;
  227. const struct keytype *kt;
  228. int type;
  229.  
  230. if (names == NULL || strcmp(names, "") == 0)
  231. return 0;
  232. if ((s = cp = strdup(names)) == NULL)
  233. return 0;
  234. for ((p = strsep(&cp, ",")); p && *p != '\0';
  235. (p = strsep(&cp, ","))) {
  236. type = sshkey_type_from_name(p);
  237. if (type == KEY_RSA1) {
  238. free(s);
  239. return 0;
  240. }
  241. if (type == KEY_UNSPEC) {
  242. if (allow_wildcard) {
  243. /*
  244. * Try matching key types against the string.
  245. * If any has a positive or negative match then
  246. * the component is accepted.
  247. */
  248. for (kt = keytypes; kt->type != -1; kt++) {
  249. if (kt->type == KEY_RSA1)
  250. continue;
  251. if (match_pattern_list(kt->name,
  252. p, 0) != 0)
  253. break;
  254. }
  255. if (kt->type != -1)
  256. continue;
  257. }
  258. free(s);
  259. return 0;
  260. }
  261. }
  262. free(s);
  263. return 1;
  264. }
  265.  
  266. u_int
  267. sshkey_size(const struct sshkey *k)
  268. {
  269. switch (k->type) {
  270. #ifdef WITH_OPENSSL
  271. case KEY_RSA1:
  272. case KEY_RSA:
  273. case KEY_RSA_CERT:
  274. return BN_num_bits(k->rsa->n);
  275. case KEY_DSA:
  276. case KEY_DSA_CERT:
  277. return BN_num_bits(k->dsa->p);
  278. case KEY_ECDSA:
  279. case KEY_ECDSA_CERT:
  280. return sshkey_curve_nid_to_bits(k->ecdsa_nid);
  281. #endif /* WITH_OPENSSL */
  282. case KEY_ED25519:
  283. case KEY_ED25519_CERT:
  284. return 256; /* XXX */
  285. }
  286. return 0;
  287. }
  288.  
  289. static int
  290. sshkey_type_is_valid_ca(int type)
  291. {
  292. switch (type) {
  293. case KEY_RSA:
  294. case KEY_DSA:
  295. case KEY_ECDSA:
  296. case KEY_ED25519:
  297. return 1;
  298. default:
  299. return 0;
  300. }
  301. }
  302.  
  303. int
  304. sshkey_is_cert(const struct sshkey *k)
  305. {
  306. if (k == NULL)
  307. return 0;
  308. return sshkey_type_is_cert(k->type);
  309. }
  310.  
  311. /* Return the cert-less equivalent to a certified key type */
  312. int
  313. sshkey_type_plain(int type)
  314. {
  315. switch (type) {
  316. case KEY_RSA_CERT:
  317. return KEY_RSA;
  318. case KEY_DSA_CERT:
  319. return KEY_DSA;
  320. case KEY_ECDSA_CERT:
  321. return KEY_ECDSA;
  322. case KEY_ED25519_CERT:
  323. return KEY_ED25519;
  324. default:
  325. return type;
  326. }
  327. }
  328.  
  329. #ifdef WITH_OPENSSL
  330. /* XXX: these are really begging for a table-driven approach */
  331. int
  332. sshkey_curve_name_to_nid(const char *name)
  333. {
  334. if (strcmp(name, "nistp256") == 0)
  335. return NID_X9_62_prime256v1;
  336. else if (strcmp(name, "nistp384") == 0)
  337. return NID_secp384r1;
  338. # ifdef OPENSSL_HAS_NISTP521
  339. else if (strcmp(name, "nistp521") == 0)
  340. return NID_secp521r1;
  341. # endif /* OPENSSL_HAS_NISTP521 */
  342. else
  343. return -1;
  344. }
  345.  
  346. u_int
  347. sshkey_curve_nid_to_bits(int nid)
  348. {
  349. switch (nid) {
  350. case NID_X9_62_prime256v1:
  351. return 256;
  352. case NID_secp384r1:
  353. return 384;
  354. # ifdef OPENSSL_HAS_NISTP521
  355. case NID_secp521r1:
  356. return 521;
  357. # endif /* OPENSSL_HAS_NISTP521 */
  358. default:
  359. return 0;
  360. }
  361. }
  362.  
  363. int
  364. sshkey_ecdsa_bits_to_nid(int bits)
  365. {
  366. switch (bits) {
  367. case 256:
  368. return NID_X9_62_prime256v1;
  369. case 384:
  370. return NID_secp384r1;
  371. # ifdef OPENSSL_HAS_NISTP521
  372. case 521:
  373. return NID_secp521r1;
  374. # endif /* OPENSSL_HAS_NISTP521 */
  375. default:
  376. return -1;
  377. }
  378. }
  379.  
  380. const char *
  381. sshkey_curve_nid_to_name(int nid)
  382. {
  383. switch (nid) {
  384. case NID_X9_62_prime256v1:
  385. return "nistp256";
  386. case NID_secp384r1:
  387. return "nistp384";
  388. # ifdef OPENSSL_HAS_NISTP521
  389. case NID_secp521r1:
  390. return "nistp521";
  391. # endif /* OPENSSL_HAS_NISTP521 */
  392. default:
  393. return NULL;
  394. }
  395. }
  396.  
  397. int
  398. sshkey_ec_nid_to_hash_alg(int nid)
  399. {
  400. int kbits = sshkey_curve_nid_to_bits(nid);
  401.  
  402. if (kbits <= 0)
  403. return -1;
  404.  
  405. /* RFC5656 section 6.2.1 */
  406. if (kbits <= 256)
  407. return SSH_DIGEST_SHA256;
  408. else if (kbits <= 384)
  409. return SSH_DIGEST_SHA384;
  410. else
  411. return SSH_DIGEST_SHA512;
  412. }
  413. #endif /* WITH_OPENSSL */
  414.  
  415. static void
  416. cert_free(struct sshkey_cert *cert)
  417. {
  418. u_int i;
  419.  
  420. if (cert == NULL)
  421. return;
  422. sshbuf_free(cert->certblob);
  423. sshbuf_free(cert->critical);
  424. sshbuf_free(cert->extensions);
  425. free(cert->key_id);
  426. for (i = 0; i < cert->nprincipals; i++)
  427. free(cert->principals[i]);
  428. free(cert->principals);
  429. sshkey_free(cert->signature_key);
  430. explicit_bzero(cert, sizeof(*cert));
  431. free(cert);
  432. }
  433.  
  434. static struct sshkey_cert *
  435. cert_new(void)
  436. {
  437. struct sshkey_cert *cert;
  438.  
  439. if ((cert = calloc(1, sizeof(*cert))) == NULL)
  440. return NULL;
  441. if ((cert->certblob = sshbuf_new()) == NULL ||
  442. (cert->critical = sshbuf_new()) == NULL ||
  443. (cert->extensions = sshbuf_new()) == NULL) {
  444. cert_free(cert);
  445. return NULL;
  446. }
  447. cert->key_id = NULL;
  448. cert->principals = NULL;
  449. cert->signature_key = NULL;
  450. return cert;
  451. }
  452.  
  453. struct sshkey *
  454. sshkey_new(int type)
  455. {
  456. struct sshkey *k;
  457. #ifdef WITH_OPENSSL
  458. RSA *rsa;
  459. DSA *dsa;
  460. #endif /* WITH_OPENSSL */
  461.  
  462. if ((k = calloc(1, sizeof(*k))) == NULL)
  463. return NULL;
  464. k->type = type;
  465. k->ecdsa = NULL;
  466. k->ecdsa_nid = -1;
  467. k->dsa = NULL;
  468. k->rsa = NULL;
  469. k->cert = NULL;
  470. k->ed25519_sk = NULL;
  471. k->ed25519_pk = NULL;
  472. switch (k->type) {
  473. #ifdef WITH_OPENSSL
  474. case KEY_RSA1:
  475. case KEY_RSA:
  476. case KEY_RSA_CERT:
  477. if ((rsa = RSA_new()) == NULL ||
  478. (rsa->n = BN_new()) == NULL ||
  479. (rsa->e = BN_new()) == NULL) {
  480. if (rsa != NULL)
  481. RSA_free(rsa);
  482. free(k);
  483. return NULL;
  484. }
  485. k->rsa = rsa;
  486. break;
  487. case KEY_DSA:
  488. case KEY_DSA_CERT:
  489. if ((dsa = DSA_new()) == NULL ||
  490. (dsa->p = BN_new()) == NULL ||
  491. (dsa->q = BN_new()) == NULL ||
  492. (dsa->g = BN_new()) == NULL ||
  493. (dsa->pub_key = BN_new()) == NULL) {
  494. if (dsa != NULL)
  495. DSA_free(dsa);
  496. free(k);
  497. return NULL;
  498. }
  499. k->dsa = dsa;
  500. break;
  501. case KEY_ECDSA:
  502. case KEY_ECDSA_CERT:
  503. /* Cannot do anything until we know the group */
  504. break;
  505. #endif /* WITH_OPENSSL */
  506. case KEY_ED25519:
  507. case KEY_ED25519_CERT:
  508. /* no need to prealloc */
  509. break;
  510. case KEY_UNSPEC:
  511. break;
  512. default:
  513. free(k);
  514. return NULL;
  515. }
  516.  
  517. if (sshkey_is_cert(k)) {
  518. if ((k->cert = cert_new()) == NULL) {
  519. sshkey_free(k);
  520. return NULL;
  521. }
  522. }
  523.  
  524. return k;
  525. }
  526.  
  527. int
  528. sshkey_add_private(struct sshkey *k)
  529. {
  530. switch (k->type) {
  531. #ifdef WITH_OPENSSL
  532. case KEY_RSA1:
  533. case KEY_RSA:
  534. case KEY_RSA_CERT:
  535. #define bn_maybe_alloc_failed(p) (p == NULL && (p = BN_new()) == NULL)
  536. if (bn_maybe_alloc_failed(k->rsa->d) ||
  537. bn_maybe_alloc_failed(k->rsa->iqmp) ||
  538. bn_maybe_alloc_failed(k->rsa->q) ||
  539. bn_maybe_alloc_failed(k->rsa->p) ||
  540. bn_maybe_alloc_failed(k->rsa->dmq1) ||
  541. bn_maybe_alloc_failed(k->rsa->dmp1))
  542. return SSH_ERR_ALLOC_FAIL;
  543. break;
  544. case KEY_DSA:
  545. case KEY_DSA_CERT:
  546. if (bn_maybe_alloc_failed(k->dsa->priv_key))
  547. return SSH_ERR_ALLOC_FAIL;
  548. break;
  549. #undef bn_maybe_alloc_failed
  550. case KEY_ECDSA:
  551. case KEY_ECDSA_CERT:
  552. /* Cannot do anything until we know the group */
  553. break;
  554. #endif /* WITH_OPENSSL */
  555. case KEY_ED25519:
  556. case KEY_ED25519_CERT:
  557. /* no need to prealloc */
  558. break;
  559. case KEY_UNSPEC:
  560. break;
  561. default:
  562. return SSH_ERR_INVALID_ARGUMENT;
  563. }
  564. return 0;
  565. }
  566.  
  567. struct sshkey *
  568. sshkey_new_private(int type)
  569. {
  570. struct sshkey *k = sshkey_new(type);
  571.  
  572. if (k == NULL)
  573. return NULL;
  574. if (sshkey_add_private(k) != 0) {
  575. sshkey_free(k);
  576. return NULL;
  577. }
  578. return k;
  579. }
  580.  
  581. void
  582. sshkey_free(struct sshkey *k)
  583. {
  584. if (k == NULL)
  585. return;
  586. switch (k->type) {
  587. #ifdef WITH_OPENSSL
  588. case KEY_RSA1:
  589. case KEY_RSA:
  590. case KEY_RSA_CERT:
  591. if (k->rsa != NULL)
  592. RSA_free(k->rsa);
  593. k->rsa = NULL;
  594. break;
  595. case KEY_DSA:
  596. case KEY_DSA_CERT:
  597. if (k->dsa != NULL)
  598. DSA_free(k->dsa);
  599. k->dsa = NULL;
  600. break;
  601. # ifdef OPENSSL_HAS_ECC
  602. case KEY_ECDSA:
  603. case KEY_ECDSA_CERT:
  604. if (k->ecdsa != NULL)
  605. EC_KEY_free(k->ecdsa);
  606. k->ecdsa = NULL;
  607. break;
  608. # endif /* OPENSSL_HAS_ECC */
  609. #endif /* WITH_OPENSSL */
  610. case KEY_ED25519:
  611. case KEY_ED25519_CERT:
  612. if (k->ed25519_pk) {
  613. explicit_bzero(k->ed25519_pk, ED25519_PK_SZ);
  614. free(k->ed25519_pk);
  615. k->ed25519_pk = NULL;
  616. }
  617. if (k->ed25519_sk) {
  618. explicit_bzero(k->ed25519_sk, ED25519_SK_SZ);
  619. free(k->ed25519_sk);
  620. k->ed25519_sk = NULL;
  621. }
  622. break;
  623. case KEY_UNSPEC:
  624. break;
  625. default:
  626. break;
  627. }
  628. if (sshkey_is_cert(k))
  629. cert_free(k->cert);
  630. explicit_bzero(k, sizeof(*k));
  631. free(k);
  632. }
  633.  
  634. static int
  635. cert_compare(struct sshkey_cert *a, struct sshkey_cert *b)
  636. {
  637. if (a == NULL && b == NULL)
  638. return 1;
  639. if (a == NULL || b == NULL)
  640. return 0;
  641. if (sshbuf_len(a->certblob) != sshbuf_len(b->certblob))
  642. return 0;
  643. if (timingsafe_bcmp(sshbuf_ptr(a->certblob), sshbuf_ptr(b->certblob),
  644. sshbuf_len(a->certblob)) != 0)
  645. return 0;
  646. return 1;
  647. }
  648.  
  649. /*
  650. * Compare public portions of key only, allowing comparisons between
  651. * certificates and plain keys too.
  652. */
  653. int
  654. sshkey_equal_public(const struct sshkey *a, const struct sshkey *b)
  655. {
  656. #if defined(WITH_OPENSSL) && defined(OPENSSL_HAS_ECC)
  657. BN_CTX *bnctx;
  658. #endif /* WITH_OPENSSL && OPENSSL_HAS_ECC */
  659.  
  660. if (a == NULL || b == NULL ||
  661. sshkey_type_plain(a->type) != sshkey_type_plain(b->type))
  662. return 0;
  663.  
  664. switch (a->type) {
  665. #ifdef WITH_OPENSSL
  666. case KEY_RSA1:
  667. case KEY_RSA_CERT:
  668. case KEY_RSA:
  669. return a->rsa != NULL && b->rsa != NULL &&
  670. BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
  671. BN_cmp(a->rsa->n, b->rsa->n) == 0;
  672. case KEY_DSA_CERT:
  673. case KEY_DSA:
  674. return a->dsa != NULL && b->dsa != NULL &&
  675. BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
  676. BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
  677. BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
  678. BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
  679. # ifdef OPENSSL_HAS_ECC
  680. case KEY_ECDSA_CERT:
  681. case KEY_ECDSA:
  682. if (a->ecdsa == NULL || b->ecdsa == NULL ||
  683. EC_KEY_get0_public_key(a->ecdsa) == NULL ||
  684. EC_KEY_get0_public_key(b->ecdsa) == NULL)
  685. return 0;
  686. if ((bnctx = BN_CTX_new()) == NULL)
  687. return 0;
  688. if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa),
  689. EC_KEY_get0_group(b->ecdsa), bnctx) != 0 ||
  690. EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa),
  691. EC_KEY_get0_public_key(a->ecdsa),
  692. EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) {
  693. BN_CTX_free(bnctx);
  694. return 0;
  695. }
  696. BN_CTX_free(bnctx);
  697. return 1;
  698. # endif /* OPENSSL_HAS_ECC */
  699. #endif /* WITH_OPENSSL */
  700. case KEY_ED25519:
  701. case KEY_ED25519_CERT:
  702. return a->ed25519_pk != NULL && b->ed25519_pk != NULL &&
  703. memcmp(a->ed25519_pk, b->ed25519_pk, ED25519_PK_SZ) == 0;
  704. default:
  705. return 0;
  706. }
  707. /* NOTREACHED */
  708. }
  709.  
  710. int
  711. sshkey_equal(const struct sshkey *a, const struct sshkey *b)
  712. {
  713. if (a == NULL || b == NULL || a->type != b->type)
  714. return 0;
  715. if (sshkey_is_cert(a)) {
  716. if (!cert_compare(a->cert, b->cert))
  717. return 0;
  718. }
  719. return sshkey_equal_public(a, b);
  720. }
  721.  
  722. static int
  723. to_blob_buf(const struct sshkey *key, struct sshbuf *b, int force_plain)
  724. {
  725. int type, ret = SSH_ERR_INTERNAL_ERROR;
  726. const char *typename;
  727.  
  728. if (key == NULL)
  729. return SSH_ERR_INVALID_ARGUMENT;
  730.  
  731. if (sshkey_is_cert(key)) {
  732. if (key->cert == NULL)
  733. return SSH_ERR_EXPECTED_CERT;
  734. if (sshbuf_len(key->cert->certblob) == 0)
  735. return SSH_ERR_KEY_LACKS_CERTBLOB;
  736. }
  737. type = force_plain ? sshkey_type_plain(key->type) : key->type;
  738. typename = sshkey_ssh_name_from_type_nid(type, key->ecdsa_nid);
  739.  
  740. switch (type) {
  741. #ifdef WITH_OPENSSL
  742. case KEY_DSA_CERT:
  743. case KEY_ECDSA_CERT:
  744. case KEY_RSA_CERT:
  745. #endif /* WITH_OPENSSL */
  746. case KEY_ED25519_CERT:
  747. /* Use the existing blob */
  748. /* XXX modified flag? */
  749. if ((ret = sshbuf_putb(b, key->cert->certblob)) != 0)
  750. return ret;
  751. break;
  752. #ifdef WITH_OPENSSL
  753. case KEY_DSA:
  754. if (key->dsa == NULL)
  755. return SSH_ERR_INVALID_ARGUMENT;
  756. if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
  757. (ret = sshbuf_put_bignum2(b, key->dsa->p)) != 0 ||
  758. (ret = sshbuf_put_bignum2(b, key->dsa->q)) != 0 ||
  759. (ret = sshbuf_put_bignum2(b, key->dsa->g)) != 0 ||
  760. (ret = sshbuf_put_bignum2(b, key->dsa->pub_key)) != 0)
  761. return ret;
  762. break;
  763. # ifdef OPENSSL_HAS_ECC
  764. case KEY_ECDSA:
  765. if (key->ecdsa == NULL)
  766. return SSH_ERR_INVALID_ARGUMENT;
  767. if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
  768. (ret = sshbuf_put_cstring(b,
  769. sshkey_curve_nid_to_name(key->ecdsa_nid))) != 0 ||
  770. (ret = sshbuf_put_eckey(b, key->ecdsa)) != 0)
  771. return ret;
  772. break;
  773. # endif
  774. case KEY_RSA:
  775. if (key->rsa == NULL)
  776. return SSH_ERR_INVALID_ARGUMENT;
  777. if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
  778. (ret = sshbuf_put_bignum2(b, key->rsa->e)) != 0 ||
  779. (ret = sshbuf_put_bignum2(b, key->rsa->n)) != 0)
  780. return ret;
  781. break;
  782. #endif /* WITH_OPENSSL */
  783. case KEY_ED25519:
  784. if (key->ed25519_pk == NULL)
  785. return SSH_ERR_INVALID_ARGUMENT;
  786. if ((ret = sshbuf_put_cstring(b, typename)) != 0 ||
  787. (ret = sshbuf_put_string(b,
  788. key->ed25519_pk, ED25519_PK_SZ)) != 0)
  789. return ret;
  790. break;
  791. default:
  792. return SSH_ERR_KEY_TYPE_UNKNOWN;
  793. }
  794. return 0;
  795. }
  796.  
  797. int
  798. sshkey_putb(const struct sshkey *key, struct sshbuf *b)
  799. {
  800. return to_blob_buf(key, b, 0);
  801. }
  802.  
  803. int
  804. sshkey_puts(const struct sshkey *key, struct sshbuf *b)
  805. {
  806. struct sshbuf *tmp;
  807. int r;
  808.  
  809. if ((tmp = sshbuf_new()) == NULL)
  810. return SSH_ERR_ALLOC_FAIL;
  811. r = to_blob_buf(key, tmp, 0);
  812. if (r == 0)
  813. r = sshbuf_put_stringb(b, tmp);
  814. sshbuf_free(tmp);
  815. return r;
  816. }
  817.  
  818. int
  819. sshkey_putb_plain(const struct sshkey *key, struct sshbuf *b)
  820. {
  821. return to_blob_buf(key, b, 1);
  822. }
  823.  
  824. static int
  825. to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp, int force_plain)
  826. {
  827. int ret = SSH_ERR_INTERNAL_ERROR;
  828. size_t len;
  829. struct sshbuf *b = NULL;
  830.  
  831. if (lenp != NULL)
  832. *lenp = 0;
  833. if (blobp != NULL)
  834. *blobp = NULL;
  835. if ((b = sshbuf_new()) == NULL)
  836. return SSH_ERR_ALLOC_FAIL;
  837. if ((ret = to_blob_buf(key, b, force_plain)) != 0)
  838. goto out;
  839. len = sshbuf_len(b);
  840. if (lenp != NULL)
  841. *lenp = len;
  842. if (blobp != NULL) {
  843. if ((*blobp = malloc(len)) == NULL) {
  844. ret = SSH_ERR_ALLOC_FAIL;
  845. goto out;
  846. }
  847. memcpy(*blobp, sshbuf_ptr(b), len);
  848. }
  849. ret = 0;
  850. out:
  851. sshbuf_free(b);
  852. return ret;
  853. }
  854.  
  855. int
  856. sshkey_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp)
  857. {
  858. return to_blob(key, blobp, lenp, 0);
  859. }
  860.  
  861. int
  862. sshkey_plain_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp)
  863. {
  864. return to_blob(key, blobp, lenp, 1);
  865. }
  866.  
  867. int
  868. sshkey_fingerprint_raw(const struct sshkey *k, int dgst_alg,
  869. u_char **retp, size_t *lenp)
  870. {
  871. u_char *blob = NULL, *ret = NULL;
  872. size_t blob_len = 0;
  873. int r = SSH_ERR_INTERNAL_ERROR;
  874.  
  875. if (retp != NULL)
  876. *retp = NULL;
  877. if (lenp != NULL)
  878. *lenp = 0;
  879. if (ssh_digest_bytes(dgst_alg) == 0) {
  880. r = SSH_ERR_INVALID_ARGUMENT;
  881. goto out;
  882. }
  883.  
  884. if (k->type == KEY_RSA1) {
  885. #ifdef WITH_OPENSSL
  886. int nlen = BN_num_bytes(k->rsa->n);
  887. int elen = BN_num_bytes(k->rsa->e);
  888.  
  889. if (nlen < 0 || elen < 0 || nlen >= INT_MAX - elen) {
  890. r = SSH_ERR_INVALID_FORMAT;
  891. goto out;
  892. }
  893. blob_len = nlen + elen;
  894. if ((blob = malloc(blob_len)) == NULL) {
  895. r = SSH_ERR_ALLOC_FAIL;
  896. goto out;
  897. }
  898. BN_bn2bin(k->rsa->n, blob);
  899. BN_bn2bin(k->rsa->e, blob + nlen);
  900. #endif /* WITH_OPENSSL */
  901. } else if ((r = to_blob(k, &blob, &blob_len, 1)) != 0)
  902. goto out;
  903. if ((ret = calloc(1, SSH_DIGEST_MAX_LENGTH)) == NULL) {
  904. r = SSH_ERR_ALLOC_FAIL;
  905. goto out;
  906. }
  907. if ((r = ssh_digest_memory(dgst_alg, blob, blob_len,
  908. ret, SSH_DIGEST_MAX_LENGTH)) != 0)
  909. goto out;
  910. /* success */
  911. if (retp != NULL) {
  912. *retp = ret;
  913. ret = NULL;
  914. }
  915. if (lenp != NULL)
  916. *lenp = ssh_digest_bytes(dgst_alg);
  917. r = 0;
  918. out:
  919. free(ret);
  920. if (blob != NULL) {
  921. explicit_bzero(blob, blob_len);
  922. free(blob);
  923. }
  924. return r;
  925. }
  926.  
  927. static char *
  928. fingerprint_b64(const char *alg, u_char *dgst_raw, size_t dgst_raw_len)
  929. {
  930. char *ret;
  931. size_t plen = strlen(alg) + 1;
  932. size_t rlen = ((dgst_raw_len + 2) / 3) * 4 + plen + 1;
  933. int r;
  934.  
  935. if (dgst_raw_len > 65536 || (ret = calloc(1, rlen)) == NULL)
  936. return NULL;
  937. strlcpy(ret, alg, rlen);
  938. strlcat(ret, ":", rlen);
  939. if (dgst_raw_len == 0)
  940. return ret;
  941. if ((r = b64_ntop(dgst_raw, dgst_raw_len,
  942. ret + plen, rlen - plen)) == -1) {
  943. explicit_bzero(ret, rlen);
  944. free(ret);
  945. return NULL;
  946. }
  947. /* Trim padding characters from end */
  948. ret[strcspn(ret, "=")] = '\0';
  949. return ret;
  950. }
  951.  
  952. static char *
  953. fingerprint_hex(const char *alg, u_char *dgst_raw, size_t dgst_raw_len)
  954. {
  955. char *retval, hex[5];
  956. size_t i, rlen = dgst_raw_len * 3 + strlen(alg) + 2;
  957.  
  958. if (dgst_raw_len > 65536 || (retval = calloc(1, rlen)) == NULL)
  959. return NULL;
  960. strlcpy(retval, alg, rlen);
  961. strlcat(retval, ":", rlen);
  962. for (i = 0; i < dgst_raw_len; i++) {
  963. snprintf(hex, sizeof(hex), "%s%02x",
  964. i > 0 ? ":" : "", dgst_raw[i]);
  965. strlcat(retval, hex, rlen);
  966. }
  967. return retval;
  968. }
  969.  
  970. static char *
  971. fingerprint_bubblebabble(u_char *dgst_raw, size_t dgst_raw_len)
  972. {
  973. char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
  974. char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
  975. 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
  976. u_int i, j = 0, rounds, seed = 1;
  977. char *retval;
  978.  
  979. rounds = (dgst_raw_len / 2) + 1;
  980. if ((retval = calloc(rounds, 6)) == NULL)
  981. return NULL;
  982. retval[j++] = 'x';
  983. for (i = 0; i < rounds; i++) {
  984. u_int idx0, idx1, idx2, idx3, idx4;
  985. if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
  986. idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
  987. seed) % 6;
  988. idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
  989. idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
  990. (seed / 6)) % 6;
  991. retval[j++] = vowels[idx0];
  992. retval[j++] = consonants[idx1];
  993. retval[j++] = vowels[idx2];
  994. if ((i + 1) < rounds) {
  995. idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
  996. idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
  997. retval[j++] = consonants[idx3];
  998. retval[j++] = '-';
  999. retval[j++] = consonants[idx4];
  1000. seed = ((seed * 5) +
  1001. ((((u_int)(dgst_raw[2 * i])) * 7) +
  1002. ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
  1003. }
  1004. } else {
  1005. idx0 = seed % 6;
  1006. idx1 = 16;
  1007. idx2 = seed / 6;
  1008. retval[j++] = vowels[idx0];
  1009. retval[j++] = consonants[idx1];
  1010. retval[j++] = vowels[idx2];
  1011. }
  1012. }
  1013. retval[j++] = 'x';
  1014. retval[j++] = '\0';
  1015. return retval;
  1016. }
  1017.  
  1018. /*
  1019. * Draw an ASCII-Art representing the fingerprint so human brain can
  1020. * profit from its built-in pattern recognition ability.
  1021. * This technique is called "random art" and can be found in some
  1022. * scientific publications like this original paper:
  1023. *
  1024. * "Hash Visualization: a New Technique to improve Real-World Security",
  1025. * Perrig A. and Song D., 1999, International Workshop on Cryptographic
  1026. * Techniques and E-Commerce (CrypTEC '99)
  1027. * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
  1028. *
  1029. * The subject came up in a talk by Dan Kaminsky, too.
  1030. *
  1031. * If you see the picture is different, the key is different.
  1032. * If the picture looks the same, you still know nothing.
  1033. *
  1034. * The algorithm used here is a worm crawling over a discrete plane,
  1035. * leaving a trace (augmenting the field) everywhere it goes.
  1036. * Movement is taken from dgst_raw 2bit-wise. Bumping into walls
  1037. * makes the respective movement vector be ignored for this turn.
  1038. * Graphs are not unambiguous, because circles in graphs can be
  1039. * walked in either direction.
  1040. */
  1041.  
  1042. /*
  1043. * Field sizes for the random art. Have to be odd, so the starting point
  1044. * can be in the exact middle of the picture, and FLDBASE should be >=8 .
  1045. * Else pictures would be too dense, and drawing the frame would
  1046. * fail, too, because the key type would not fit in anymore.
  1047. */
  1048. #define FLDBASE 8
  1049. #define FLDSIZE_Y (FLDBASE + 1)
  1050. #define FLDSIZE_X (FLDBASE * 2 + 1)
  1051. static char *
  1052. fingerprint_randomart(const char *alg, u_char *dgst_raw, size_t dgst_raw_len,
  1053. const struct sshkey *k)
  1054. {
  1055. /*
  1056. * Chars to be used after each other every time the worm
  1057. * intersects with itself. Matter of taste.
  1058. */
  1059. char *augmentation_string = " .o+=*BOX@%&#/^SE";
  1060. char *retval, *p, title[FLDSIZE_X], hash[FLDSIZE_X];
  1061. u_char field[FLDSIZE_X][FLDSIZE_Y];
  1062. size_t i, tlen, hlen;
  1063. u_int b;
  1064. int x, y, r;
  1065. size_t len = strlen(augmentation_string) - 1;
  1066.  
  1067. if ((retval = calloc((FLDSIZE_X + 3), (FLDSIZE_Y + 2))) == NULL)
  1068. return NULL;
  1069.  
  1070. /* initialize field */
  1071. memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char));
  1072. x = FLDSIZE_X / 2;
  1073. y = FLDSIZE_Y / 2;
  1074.  
  1075. /* process raw key */
  1076. for (i = 0; i < dgst_raw_len; i++) {
  1077. int input;
  1078. /* each byte conveys four 2-bit move commands */
  1079. input = dgst_raw[i];
  1080. for (b = 0; b < 4; b++) {
  1081. /* evaluate 2 bit, rest is shifted later */
  1082. x += (input & 0x1) ? 1 : -1;
  1083. y += (input & 0x2) ? 1 : -1;
  1084.  
  1085. /* assure we are still in bounds */
  1086. x = MAXIMUM(x, 0);
  1087. y = MAXIMUM(y, 0);
  1088. x = MINIMUM(x, FLDSIZE_X - 1);
  1089. y = MINIMUM(y, FLDSIZE_Y - 1);
  1090.  
  1091. /* augment the field */
  1092. if (field[x][y] < len - 2)
  1093. field[x][y]++;
  1094. input = input >> 2;
  1095. }
  1096. }
  1097.  
  1098. /* mark starting point and end point*/
  1099. field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
  1100. field[x][y] = len;
  1101.  
  1102. /* assemble title */
  1103. r = snprintf(title, sizeof(title), "[%s %u]",
  1104. sshkey_type(k), sshkey_size(k));
  1105. /* If [type size] won't fit, then try [type]; fits "[ED25519-CERT]" */
  1106. if (r < 0 || r > (int)sizeof(title))
  1107. r = snprintf(title, sizeof(title), "[%s]", sshkey_type(k));
  1108. tlen = (r <= 0) ? 0 : strlen(title);
  1109.  
  1110. /* assemble hash ID. */
  1111. r = snprintf(hash, sizeof(hash), "[%s]", alg);
  1112. hlen = (r <= 0) ? 0 : strlen(hash);
  1113.  
  1114. /* output upper border */
  1115. p = retval;
  1116. *p++ = '+';
  1117. for (i = 0; i < (FLDSIZE_X - tlen) / 2; i++)
  1118. *p++ = '-';
  1119. memcpy(p, title, tlen);
  1120. p += tlen;
  1121. for (i += tlen; i < FLDSIZE_X; i++)
  1122. *p++ = '-';
  1123. *p++ = '+';
  1124. *p++ = '\n';
  1125.  
  1126. /* output content */
  1127. for (y = 0; y < FLDSIZE_Y; y++) {
  1128. *p++ = '|';
  1129. for (x = 0; x < FLDSIZE_X; x++)
  1130. *p++ = augmentation_string[MINIMUM(field[x][y], len)];
  1131. *p++ = '|';
  1132. *p++ = '\n';
  1133. }
  1134.  
  1135. /* output lower border */
  1136. *p++ = '+';
  1137. for (i = 0; i < (FLDSIZE_X - hlen) / 2; i++)
  1138. *p++ = '-';
  1139. memcpy(p, hash, hlen);
  1140. p += hlen;
  1141. for (i += hlen; i < FLDSIZE_X; i++)
  1142. *p++ = '-';
  1143. *p++ = '+';
  1144.  
  1145. return retval;
  1146. }
  1147.  
  1148. char *
  1149. sshkey_fingerprint(const struct sshkey *k, int dgst_alg,
  1150. enum sshkey_fp_rep dgst_rep)
  1151. {
  1152. char *retval = NULL;
  1153. u_char *dgst_raw;
  1154. size_t dgst_raw_len;
  1155.  
  1156. if (sshkey_fingerprint_raw(k, dgst_alg, &dgst_raw, &dgst_raw_len) != 0)
  1157. return NULL;
  1158. switch (dgst_rep) {
  1159. case SSH_FP_DEFAULT:
  1160. if (dgst_alg == SSH_DIGEST_MD5) {
  1161. retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg),
  1162. dgst_raw, dgst_raw_len);
  1163. } else {
  1164. retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg),
  1165. dgst_raw, dgst_raw_len);
  1166. }
  1167. break;
  1168. case SSH_FP_HEX:
  1169. retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg),
  1170. dgst_raw, dgst_raw_len);
  1171. break;
  1172. case SSH_FP_BASE64:
  1173. retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg),
  1174. dgst_raw, dgst_raw_len);
  1175. break;
  1176. case SSH_FP_BUBBLEBABBLE:
  1177. retval = fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
  1178. break;
  1179. case SSH_FP_RANDOMART:
  1180. retval = fingerprint_randomart(ssh_digest_alg_name(dgst_alg),
  1181. dgst_raw, dgst_raw_len, k);
  1182. break;
  1183. default:
  1184. explicit_bzero(dgst_raw, dgst_raw_len);
  1185. free(dgst_raw);
  1186. return NULL;
  1187. }
  1188. explicit_bzero(dgst_raw, dgst_raw_len);
  1189. free(dgst_raw);
  1190. return retval;
  1191. }
  1192.  
  1193. #ifdef WITH_SSH1
  1194. /*
  1195. * Reads a multiple-precision integer in decimal from the buffer, and advances
  1196. * the pointer. The integer must already be initialized. This function is
  1197. * permitted to modify the buffer. This leaves *cpp to point just beyond the
  1198. * last processed character.
  1199. */
  1200. static int
  1201. read_decimal_bignum(char **cpp, BIGNUM *v)
  1202. {
  1203. char *cp;
  1204. size_t e;
  1205. int skip = 1; /* skip white space */
  1206.  
  1207. cp = *cpp;
  1208. while (*cp == ' ' || *cp == '\t')
  1209. cp++;
  1210. e = strspn(cp, "0123456789");
  1211. if (e == 0)
  1212. return SSH_ERR_INVALID_FORMAT;
  1213. if (e > SSHBUF_MAX_BIGNUM * 3)
  1214. return SSH_ERR_BIGNUM_TOO_LARGE;
  1215. if (cp[e] == '\0')
  1216. skip = 0;
  1217. else if (strchr(" \t\r\n", cp[e]) == NULL)
  1218. return SSH_ERR_INVALID_FORMAT;
  1219. cp[e] = '\0';
  1220. if (BN_dec2bn(&v, cp) <= 0)
  1221. return SSH_ERR_INVALID_FORMAT;
  1222. *cpp = cp + e + skip;
  1223. return 0;
  1224. }
  1225. #endif /* WITH_SSH1 */
  1226.  
  1227. /* returns 0 ok, and < 0 error */
  1228. int
  1229. sshkey_read(struct sshkey *ret, char **cpp)
  1230. {
  1231. struct sshkey *k;
  1232. int retval = SSH_ERR_INVALID_FORMAT;
  1233. char *ep, *cp, *space;
  1234. int r, type, curve_nid = -1;
  1235. struct sshbuf *blob;
  1236. #ifdef WITH_SSH1
  1237. u_long bits;
  1238. #endif /* WITH_SSH1 */
  1239.  
  1240. cp = *cpp;
  1241.  
  1242. switch (ret->type) {
  1243. case KEY_RSA1:
  1244. #ifdef WITH_SSH1
  1245. /* Get number of bits. */
  1246. bits = strtoul(cp, &ep, 10);
  1247. if (*cp == '\0' || strchr(" \t\r\n", *ep) == NULL ||
  1248. bits == 0 || bits > SSHBUF_MAX_BIGNUM * 8)
  1249. return SSH_ERR_INVALID_FORMAT; /* Bad bit count... */
  1250. /* Get public exponent, public modulus. */
  1251. if ((r = read_decimal_bignum(&ep, ret->rsa->e)) < 0)
  1252. return r;
  1253. if ((r = read_decimal_bignum(&ep, ret->rsa->n)) < 0)
  1254. return r;
  1255. /* validate the claimed number of bits */
  1256. if (BN_num_bits(ret->rsa->n) != (int)bits)
  1257. return SSH_ERR_KEY_BITS_MISMATCH;
  1258. *cpp = ep;
  1259. retval = 0;
  1260. #endif /* WITH_SSH1 */
  1261. break;
  1262. case KEY_UNSPEC:
  1263. case KEY_RSA:
  1264. case KEY_DSA:
  1265. case KEY_ECDSA:
  1266. case KEY_ED25519:
  1267. case KEY_DSA_CERT:
  1268. case KEY_ECDSA_CERT:
  1269. case KEY_RSA_CERT:
  1270. case KEY_ED25519_CERT:
  1271. space = strchr(cp, ' ');
  1272. if (space == NULL)
  1273. return SSH_ERR_INVALID_FORMAT;
  1274. *space = '\0';
  1275. type = sshkey_type_from_name(cp);
  1276. if (sshkey_type_plain(type) == KEY_ECDSA &&
  1277. (curve_nid = sshkey_ecdsa_nid_from_name(cp)) == -1)
  1278. return SSH_ERR_EC_CURVE_INVALID;
  1279. *space = ' ';
  1280. if (type == KEY_UNSPEC)
  1281. return SSH_ERR_INVALID_FORMAT;
  1282. cp = space+1;
  1283. if (*cp == '\0')
  1284. return SSH_ERR_INVALID_FORMAT;
  1285. if (ret->type != KEY_UNSPEC && ret->type != type)
  1286. return SSH_ERR_KEY_TYPE_MISMATCH;
  1287. if ((blob = sshbuf_new()) == NULL)
  1288. return SSH_ERR_ALLOC_FAIL;
  1289. /* trim comment */
  1290. space = strchr(cp, ' ');
  1291. if (space) {
  1292. /* advance 'space': skip whitespace */
  1293. *space++ = '\0';
  1294. while (*space == ' ' || *space == '\t')
  1295. space++;
  1296. ep = space;
  1297. } else
  1298. ep = cp + strlen(cp);
  1299. if ((r = sshbuf_b64tod(blob, cp)) != 0) {
  1300. sshbuf_free(blob);
  1301. return r;
  1302. }
  1303. if ((r = sshkey_from_blob(sshbuf_ptr(blob),
  1304. sshbuf_len(blob), &k)) != 0) {
  1305. sshbuf_free(blob);
  1306. return r;
  1307. }
  1308. sshbuf_free(blob);
  1309. if (k->type != type) {
  1310. sshkey_free(k);
  1311. return SSH_ERR_KEY_TYPE_MISMATCH;
  1312. }
  1313. if (sshkey_type_plain(type) == KEY_ECDSA &&
  1314. curve_nid != k->ecdsa_nid) {
  1315. sshkey_free(k);
  1316. return SSH_ERR_EC_CURVE_MISMATCH;
  1317. }
  1318. ret->type = type;
  1319. if (sshkey_is_cert(ret)) {
  1320. if (!sshkey_is_cert(k)) {
  1321. sshkey_free(k);
  1322. return SSH_ERR_EXPECTED_CERT;
  1323. }
  1324. if (ret->cert != NULL)
  1325. cert_free(ret->cert);
  1326. ret->cert = k->cert;
  1327. k->cert = NULL;
  1328. }
  1329. switch (sshkey_type_plain(ret->type)) {
  1330. #ifdef WITH_OPENSSL
  1331. case KEY_RSA:
  1332. if (ret->rsa != NULL)
  1333. RSA_free(ret->rsa);
  1334. ret->rsa = k->rsa;
  1335. k->rsa = NULL;
  1336. #ifdef DEBUG_PK
  1337. RSA_print_fp(stderr, ret->rsa, 8);
  1338. #endif
  1339. break;
  1340. case KEY_DSA:
  1341. if (ret->dsa != NULL)
  1342. DSA_free(ret->dsa);
  1343. ret->dsa = k->dsa;
  1344. k->dsa = NULL;
  1345. #ifdef DEBUG_PK
  1346. DSA_print_fp(stderr, ret->dsa, 8);
  1347. #endif
  1348. break;
  1349. # ifdef OPENSSL_HAS_ECC
  1350. case KEY_ECDSA:
  1351. if (ret->ecdsa != NULL)
  1352. EC_KEY_free(ret->ecdsa);
  1353. ret->ecdsa = k->ecdsa;
  1354. ret->ecdsa_nid = k->ecdsa_nid;
  1355. k->ecdsa = NULL;
  1356. k->ecdsa_nid = -1;
  1357. #ifdef DEBUG_PK
  1358. sshkey_dump_ec_key(ret->ecdsa);
  1359. #endif
  1360. break;
  1361. # endif /* OPENSSL_HAS_ECC */
  1362. #endif /* WITH_OPENSSL */
  1363. case KEY_ED25519:
  1364. free(ret->ed25519_pk);
  1365. ret->ed25519_pk = k->ed25519_pk;
  1366. k->ed25519_pk = NULL;
  1367. #ifdef DEBUG_PK
  1368. /* XXX */
  1369. #endif
  1370. break;
  1371. }
  1372. *cpp = ep;
  1373. retval = 0;
  1374. /*XXXX*/
  1375. sshkey_free(k);
  1376. if (retval != 0)
  1377. break;
  1378. break;
  1379. default:
  1380. return SSH_ERR_INVALID_ARGUMENT;
  1381. }
  1382. return retval;
  1383. }
  1384.  
  1385. int
  1386. sshkey_to_base64(const struct sshkey *key, char **b64p)
  1387. {
  1388. int r = SSH_ERR_INTERNAL_ERROR;
  1389. struct sshbuf *b = NULL;
  1390. char *uu = NULL;
  1391.  
  1392. if (b64p != NULL)
  1393. *b64p = NULL;
  1394. if ((b = sshbuf_new()) == NULL)
  1395. return SSH_ERR_ALLOC_FAIL;
  1396. if ((r = sshkey_putb(key, b)) != 0)
  1397. goto out;
  1398. if ((uu = sshbuf_dtob64(b)) == NULL) {
  1399. r = SSH_ERR_ALLOC_FAIL;
  1400. goto out;
  1401. }
  1402. /* Success */
  1403. if (b64p != NULL) {
  1404. *b64p = uu;
  1405. uu = NULL;
  1406. }
  1407. r = 0;
  1408. out:
  1409. sshbuf_free(b);
  1410. free(uu);
  1411. return r;
  1412. }
  1413.  
  1414. static int
  1415. sshkey_format_rsa1(const struct sshkey *key, struct sshbuf *b)
  1416. {
  1417. int r = SSH_ERR_INTERNAL_ERROR;
  1418. #ifdef WITH_SSH1
  1419. u_int bits = 0;
  1420. char *dec_e = NULL, *dec_n = NULL;
  1421.  
  1422. if (key->rsa == NULL || key->rsa->e == NULL ||
  1423. key->rsa->n == NULL) {
  1424. r = SSH_ERR_INVALID_ARGUMENT;
  1425. goto out;
  1426. }
  1427. if ((dec_e = BN_bn2dec(key->rsa->e)) == NULL ||
  1428. (dec_n = BN_bn2dec(key->rsa->n)) == NULL) {
  1429. r = SSH_ERR_ALLOC_FAIL;
  1430. goto out;
  1431. }
  1432. /* size of modulus 'n' */
  1433. if ((bits = BN_num_bits(key->rsa->n)) <= 0) {
  1434. r = SSH_ERR_INVALID_ARGUMENT;
  1435. goto out;
  1436. }
  1437. if ((r = sshbuf_putf(b, "%u %s %s", bits, dec_e, dec_n)) != 0)
  1438. goto out;
  1439.  
  1440. /* Success */
  1441. r = 0;
  1442. out:
  1443. if (dec_e != NULL)
  1444. OPENSSL_free(dec_e);
  1445. if (dec_n != NULL)
  1446. OPENSSL_free(dec_n);
  1447. #endif /* WITH_SSH1 */
  1448.  
  1449. return r;
  1450. }
  1451.  
  1452. static int
  1453. sshkey_format_text(const struct sshkey *key, struct sshbuf *b)
  1454. {
  1455. int r = SSH_ERR_INTERNAL_ERROR;
  1456. char *uu = NULL;
  1457.  
  1458. if (key->type == KEY_RSA1) {
  1459. if ((r = sshkey_format_rsa1(key, b)) != 0)
  1460. goto out;
  1461. } else {
  1462. /* Unsupported key types handled in sshkey_to_base64() */
  1463. if ((r = sshkey_to_base64(key, &uu)) != 0)
  1464. goto out;
  1465. if ((r = sshbuf_putf(b, "%s %s",
  1466. sshkey_ssh_name(key), uu)) != 0)
  1467. goto out;
  1468. }
  1469. r = 0;
  1470. out:
  1471. free(uu);
  1472. return r;
  1473. }
  1474.  
  1475. int
  1476. sshkey_write(const struct sshkey *key, FILE *f)
  1477. {
  1478. struct sshbuf *b = NULL;
  1479. int r = SSH_ERR_INTERNAL_ERROR;
  1480.  
  1481. if ((b = sshbuf_new()) == NULL)
  1482. return SSH_ERR_ALLOC_FAIL;
  1483. if ((r = sshkey_format_text(key, b)) != 0)
  1484. goto out;
  1485. if (fwrite(sshbuf_ptr(b), sshbuf_len(b), 1, f) != 1) {
  1486. if (feof(f))
  1487. errno = EPIPE;
  1488. r = SSH_ERR_SYSTEM_ERROR;
  1489. goto out;
  1490. }
  1491. /* Success */
  1492. r = 0;
  1493. out:
  1494. sshbuf_free(b);
  1495. return r;
  1496. }
  1497.  
  1498. const char *
  1499. sshkey_cert_type(const struct sshkey *k)
  1500. {
  1501. switch (k->cert->type) {
  1502. case SSH2_CERT_TYPE_USER:
  1503. return "user";
  1504. case SSH2_CERT_TYPE_HOST:
  1505. return "host";
  1506. default:
  1507. return "unknown";
  1508. }
  1509. }
  1510.  
  1511. #ifdef WITH_OPENSSL
  1512. static int
  1513. rsa_generate_private_key(u_int bits, RSA **rsap)
  1514. {
  1515. RSA *private = NULL;
  1516. BIGNUM *f4 = NULL;
  1517. int ret = SSH_ERR_INTERNAL_ERROR;
  1518.  
  1519. if (rsap == NULL ||
  1520. bits < SSH_RSA_MINIMUM_MODULUS_SIZE ||
  1521. bits > SSHBUF_MAX_BIGNUM * 8)
  1522. return SSH_ERR_INVALID_ARGUMENT;
  1523. *rsap = NULL;
  1524. if ((private = RSA_new()) == NULL || (f4 = BN_new()) == NULL) {
  1525. ret = SSH_ERR_ALLOC_FAIL;
  1526. goto out;
  1527. }
  1528. if (!BN_set_word(f4, RSA_F4) ||
  1529. !RSA_generate_key_ex(private, bits, f4, NULL)) {
  1530. ret = SSH_ERR_LIBCRYPTO_ERROR;
  1531. goto out;
  1532. }
  1533. *rsap = private;
  1534. private = NULL;
  1535. ret = 0;
  1536. out:
  1537. if (private != NULL)
  1538. RSA_free(private);
  1539. if (f4 != NULL)
  1540. BN_free(f4);
  1541. return ret;
  1542. }
  1543.  
  1544. static int
  1545. dsa_generate_private_key(u_int bits, DSA **dsap)
  1546. {
  1547. DSA *private;
  1548. int ret = SSH_ERR_INTERNAL_ERROR;
  1549.  
  1550. if (dsap == NULL || bits != 1024)
  1551. return SSH_ERR_INVALID_ARGUMENT;
  1552. if ((private = DSA_new()) == NULL) {
  1553. ret = SSH_ERR_ALLOC_FAIL;
  1554. goto out;
  1555. }
  1556. *dsap = NULL;
  1557. if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL,
  1558. NULL, NULL) || !DSA_generate_key(private)) {
  1559. ret = SSH_ERR_LIBCRYPTO_ERROR;
  1560. goto out;
  1561. }
  1562. *dsap = private;
  1563. private = NULL;
  1564. ret = 0;
  1565. out:
  1566. if (private != NULL)
  1567. DSA_free(private);
  1568. return ret;
  1569. }
  1570.  
  1571. # ifdef OPENSSL_HAS_ECC
  1572. int
  1573. sshkey_ecdsa_key_to_nid(EC_KEY *k)
  1574. {
  1575. EC_GROUP *eg;
  1576. int nids[] = {
  1577. NID_X9_62_prime256v1,
  1578. NID_secp384r1,
  1579. # ifdef OPENSSL_HAS_NISTP521
  1580. NID_secp521r1,
  1581. # endif /* OPENSSL_HAS_NISTP521 */
  1582. -1
  1583. };
  1584. int nid;
  1585. u_int i;
  1586. BN_CTX *bnctx;
  1587. const EC_GROUP *g = EC_KEY_get0_group(k);
  1588.  
  1589. /*
  1590. * The group may be stored in a ASN.1 encoded private key in one of two
  1591. * ways: as a "named group", which is reconstituted by ASN.1 object ID
  1592. * or explicit group parameters encoded into the key blob. Only the
  1593. * "named group" case sets the group NID for us, but we can figure
  1594. * it out for the other case by comparing against all the groups that
  1595. * are supported.
  1596. */
  1597. if ((nid = EC_GROUP_get_curve_name(g)) > 0)
  1598. return nid;
  1599. if ((bnctx = BN_CTX_new()) == NULL)
  1600. return -1;
  1601. for (i = 0; nids[i] != -1; i++) {
  1602. if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL) {
  1603. BN_CTX_free(bnctx);
  1604. return -1;
  1605. }
  1606. if (EC_GROUP_cmp(g, eg, bnctx) == 0)
  1607. break;
  1608. EC_GROUP_free(eg);
  1609. }
  1610. BN_CTX_free(bnctx);
  1611. if (nids[i] != -1) {
  1612. /* Use the group with the NID attached */
  1613. EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE);
  1614. if (EC_KEY_set_group(k, eg) != 1) {
  1615. EC_GROUP_free(eg);
  1616. return -1;
  1617. }
  1618. }
  1619. return nids[i];
  1620. }
  1621.  
  1622. static int
  1623. ecdsa_generate_private_key(u_int bits, int *nid, EC_KEY **ecdsap)
  1624. {
  1625. EC_KEY *private;
  1626. int ret = SSH_ERR_INTERNAL_ERROR;
  1627.  
  1628. if (nid == NULL || ecdsap == NULL ||
  1629. (*nid = sshkey_ecdsa_bits_to_nid(bits)) == -1)
  1630. return SSH_ERR_INVALID_ARGUMENT;
  1631. *ecdsap = NULL;
  1632. if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) {
  1633. ret = SSH_ERR_ALLOC_FAIL;
  1634. goto out;
  1635. }
  1636. if (EC_KEY_generate_key(private) != 1) {
  1637. ret = SSH_ERR_LIBCRYPTO_ERROR;
  1638. goto out;
  1639. }
  1640. EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE);
  1641. *ecdsap = private;
  1642. private = NULL;
  1643. ret = 0;
  1644. out:
  1645. if (private != NULL)
  1646. EC_KEY_free(private);
  1647. return ret;
  1648. }
  1649. # endif /* OPENSSL_HAS_ECC */
  1650. #endif /* WITH_OPENSSL */
  1651.  
  1652. int
  1653. sshkey_generate(int type, u_int bits, struct sshkey **keyp)
  1654. {
  1655. struct sshkey *k;
  1656. int ret = SSH_ERR_INTERNAL_ERROR;
  1657.  
  1658. if (keyp == NULL)
  1659. return SSH_ERR_INVALID_ARGUMENT;
  1660. *keyp = NULL;
  1661. if ((k = sshkey_new(KEY_UNSPEC)) == NULL)
  1662. return SSH_ERR_ALLOC_FAIL;
  1663. switch (type) {
  1664. case KEY_ED25519:
  1665. if ((k->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL ||
  1666. (k->ed25519_sk = malloc(ED25519_SK_SZ)) == NULL) {
  1667. ret = SSH_ERR_ALLOC_FAIL;
  1668. break;
  1669. }
  1670. crypto_sign_ed25519_keypair(k->ed25519_pk, k->ed25519_sk);
  1671. ret = 0;
  1672. break;
  1673. #ifdef WITH_OPENSSL
  1674. case KEY_DSA:
  1675. ret = dsa_generate_private_key(bits, &k->dsa);
  1676. break;
  1677. # ifdef OPENSSL_HAS_ECC
  1678. case KEY_ECDSA:
  1679. ret = ecdsa_generate_private_key(bits, &k->ecdsa_nid,
  1680. &k->ecdsa);
  1681. break;
  1682. # endif /* OPENSSL_HAS_ECC */
  1683. case KEY_RSA:
  1684. case KEY_RSA1:
  1685. ret = rsa_generate_private_key(bits, &k->rsa);
  1686. break;
  1687. #endif /* WITH_OPENSSL */
  1688. default:
  1689. ret = SSH_ERR_INVALID_ARGUMENT;
  1690. }
  1691. if (ret == 0) {
  1692. k->type = type;
  1693. *keyp = k;
  1694. } else
  1695. sshkey_free(k);
  1696. return ret;
  1697. }
  1698.  
  1699. int
  1700. sshkey_cert_copy(const struct sshkey *from_key, struct sshkey *to_key)
  1701. {
  1702. u_int i;
  1703. const struct sshkey_cert *from;
  1704. struct sshkey_cert *to;
  1705. int ret = SSH_ERR_INTERNAL_ERROR;
  1706.  
  1707. if (to_key->cert != NULL) {
  1708. cert_free(to_key->cert);
  1709. to_key->cert = NULL;
  1710. }
  1711.  
  1712. if ((from = from_key->cert) == NULL)
  1713. return SSH_ERR_INVALID_ARGUMENT;
  1714.  
  1715. if ((to = to_key->cert = cert_new()) == NULL)
  1716. return SSH_ERR_ALLOC_FAIL;
  1717.  
  1718. if ((ret = sshbuf_putb(to->certblob, from->certblob)) != 0 ||
  1719. (ret = sshbuf_putb(to->critical, from->critical)) != 0 ||
  1720. (ret = sshbuf_putb(to->extensions, from->extensions)) != 0)
  1721. return ret;
  1722.  
  1723. to->serial = from->serial;
  1724. to->type = from->type;
  1725. if (from->key_id == NULL)
  1726. to->key_id = NULL;
  1727. else if ((to->key_id = strdup(from->key_id)) == NULL)
  1728. return SSH_ERR_ALLOC_FAIL;
  1729. to->valid_after = from->valid_after;
  1730. to->valid_before = from->valid_before;
  1731. if (from->signature_key == NULL)
  1732. to->signature_key = NULL;
  1733. else if ((ret = sshkey_from_private(from->signature_key,
  1734. &to->signature_key)) != 0)
  1735. return ret;
  1736.  
  1737. if (from->nprincipals > SSHKEY_CERT_MAX_PRINCIPALS)
  1738. return SSH_ERR_INVALID_ARGUMENT;
  1739. if (from->nprincipals > 0) {
  1740. if ((to->principals = calloc(from->nprincipals,
  1741. sizeof(*to->principals))) == NULL)
  1742. return SSH_ERR_ALLOC_FAIL;
  1743. for (i = 0; i < from->nprincipals; i++) {
  1744. to->principals[i] = strdup(from->principals[i]);
  1745. if (to->principals[i] == NULL) {
  1746. to->nprincipals = i;
  1747. return SSH_ERR_ALLOC_FAIL;
  1748. }
  1749. }
  1750. }
  1751. to->nprincipals = from->nprincipals;
  1752. return 0;
  1753. }
  1754.  
  1755. int
  1756. sshkey_from_private(const struct sshkey *k, struct sshkey **pkp)
  1757. {
  1758. struct sshkey *n = NULL;
  1759. int ret = SSH_ERR_INTERNAL_ERROR;
  1760.  
  1761. *pkp = NULL;
  1762. switch (k->type) {
  1763. #ifdef WITH_OPENSSL
  1764. case KEY_DSA:
  1765. case KEY_DSA_CERT:
  1766. if ((n = sshkey_new(k->type)) == NULL)
  1767. return SSH_ERR_ALLOC_FAIL;
  1768. if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) ||
  1769. (BN_copy(n->dsa->q, k->dsa->q) == NULL) ||
  1770. (BN_copy(n->dsa->g, k->dsa->g) == NULL) ||
  1771. (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL)) {
  1772. sshkey_free(n);
  1773. return SSH_ERR_ALLOC_FAIL;
  1774. }
  1775. break;
  1776. # ifdef OPENSSL_HAS_ECC
  1777. case KEY_ECDSA:
  1778. case KEY_ECDSA_CERT:
  1779. if ((n = sshkey_new(k->type)) == NULL)
  1780. return SSH_ERR_ALLOC_FAIL;
  1781. n->ecdsa_nid = k->ecdsa_nid;
  1782. n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid);
  1783. if (n->ecdsa == NULL) {
  1784. sshkey_free(n);
  1785. return SSH_ERR_ALLOC_FAIL;
  1786. }
  1787. if (EC_KEY_set_public_key(n->ecdsa,
  1788. EC_KEY_get0_public_key(k->ecdsa)) != 1) {
  1789. sshkey_free(n);
  1790. return SSH_ERR_LIBCRYPTO_ERROR;
  1791. }
  1792. break;
  1793. # endif /* OPENSSL_HAS_ECC */
  1794. case KEY_RSA:
  1795. case KEY_RSA1:
  1796. case KEY_RSA_CERT:
  1797. if ((n = sshkey_new(k->type)) == NULL)
  1798. return SSH_ERR_ALLOC_FAIL;
  1799. if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) ||
  1800. (BN_copy(n->rsa->e, k->rsa->e) == NULL)) {
  1801. sshkey_free(n);
  1802. return SSH_ERR_ALLOC_FAIL;
  1803. }
  1804. break;
  1805. #endif /* WITH_OPENSSL */
  1806. case KEY_ED25519:
  1807. case KEY_ED25519_CERT:
  1808. if ((n = sshkey_new(k->type)) == NULL)
  1809. return SSH_ERR_ALLOC_FAIL;
  1810. if (k->ed25519_pk != NULL) {
  1811. if ((n->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL) {
  1812. sshkey_free(n);
  1813. return SSH_ERR_ALLOC_FAIL;
  1814. }
  1815. memcpy(n->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ);
  1816. }
  1817. break;
  1818. default:
  1819. return SSH_ERR_KEY_TYPE_UNKNOWN;
  1820. }
  1821. if (sshkey_is_cert(k)) {
  1822. if ((ret = sshkey_cert_copy(k, n)) != 0) {
  1823. sshkey_free(n);
  1824. return ret;
  1825. }
  1826. }
  1827. *pkp = n;
  1828. return 0;
  1829. }
  1830.  
  1831. static int
  1832. cert_parse(struct sshbuf *b, struct sshkey *key, struct sshbuf *certbuf)
  1833. {
  1834. struct sshbuf *principals = NULL, *crit = NULL;
  1835. struct sshbuf *exts = NULL, *ca = NULL;
  1836. u_char *sig = NULL;
  1837. size_t signed_len = 0, slen = 0, kidlen = 0;
  1838. int ret = SSH_ERR_INTERNAL_ERROR;
  1839.  
  1840. /* Copy the entire key blob for verification and later serialisation */
  1841. if ((ret = sshbuf_putb(key->cert->certblob, certbuf)) != 0)
  1842. return ret;
  1843.  
  1844. /* Parse body of certificate up to signature */
  1845. if ((ret = sshbuf_get_u64(b, &key->cert->serial)) != 0 ||
  1846. (ret = sshbuf_get_u32(b, &key->cert->type)) != 0 ||
  1847. (ret = sshbuf_get_cstring(b, &key->cert->key_id, &kidlen)) != 0 ||
  1848. (ret = sshbuf_froms(b, &principals)) != 0 ||
  1849. (ret = sshbuf_get_u64(b, &key->cert->valid_after)) != 0 ||
  1850. (ret = sshbuf_get_u64(b, &key->cert->valid_before)) != 0 ||
  1851. (ret = sshbuf_froms(b, &crit)) != 0 ||
  1852. (ret = sshbuf_froms(b, &exts)) != 0 ||
  1853. (ret = sshbuf_get_string_direct(b, NULL, NULL)) != 0 ||
  1854. (ret = sshbuf_froms(b, &ca)) != 0) {
  1855. /* XXX debug print error for ret */
  1856. ret = SSH_ERR_INVALID_FORMAT;
  1857. goto out;
  1858. }
  1859.  
  1860. /* Signature is left in the buffer so we can calculate this length */
  1861. signed_len = sshbuf_len(key->cert->certblob) - sshbuf_len(b);
  1862.  
  1863. if ((ret = sshbuf_get_string(b, &sig, &slen)) != 0) {
  1864. ret = SSH_ERR_INVALID_FORMAT;
  1865. goto out;
  1866. }
  1867.  
  1868. if (key->cert->type != SSH2_CERT_TYPE_USER &&
  1869. key->cert->type != SSH2_CERT_TYPE_HOST) {
  1870. ret = SSH_ERR_KEY_CERT_UNKNOWN_TYPE;
  1871. goto out;
  1872. }
  1873.  
  1874. /* Parse principals section */
  1875. while (sshbuf_len(principals) > 0) {
  1876. char *principal = NULL;
  1877. char **oprincipals = NULL;
  1878.  
  1879. if (key->cert->nprincipals >= SSHKEY_CERT_MAX_PRINCIPALS) {
  1880. ret = SSH_ERR_INVALID_FORMAT;
  1881. goto out;
  1882. }
  1883. if ((ret = sshbuf_get_cstring(principals, &principal,
  1884. NULL)) != 0) {
  1885. ret = SSH_ERR_INVALID_FORMAT;
  1886. goto out;
  1887. }
  1888. oprincipals = key->cert->principals;
  1889. key->cert->principals = reallocarray(key->cert->principals,
  1890. key->cert->nprincipals + 1, sizeof(*key->cert->principals));
  1891. if (key->cert->principals == NULL) {
  1892. free(principal);
  1893. key->cert->principals = oprincipals;
  1894. ret = SSH_ERR_ALLOC_FAIL;
  1895. goto out;
  1896. }
  1897. key->cert->principals[key->cert->nprincipals++] = principal;
  1898. }
  1899.  
  1900. /*
  1901. * Stash a copies of the critical options and extensions sections
  1902. * for later use.
  1903. */
  1904. if ((ret = sshbuf_putb(key->cert->critical, crit)) != 0 ||
  1905. (exts != NULL &&
  1906. (ret = sshbuf_putb(key->cert->extensions, exts)) != 0))
  1907. goto out;
  1908.  
  1909. /*
  1910. * Validate critical options and extensions sections format.
  1911. */
  1912. while (sshbuf_len(crit) != 0) {
  1913. if ((ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0 ||
  1914. (ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0) {
  1915. sshbuf_reset(key->cert->critical);
  1916. ret = SSH_ERR_INVALID_FORMAT;
  1917. goto out;
  1918. }
  1919. }
  1920. while (exts != NULL && sshbuf_len(exts) != 0) {
  1921. if ((ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0 ||
  1922. (ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0) {
  1923. sshbuf_reset(key->cert->extensions);
  1924. ret = SSH_ERR_INVALID_FORMAT;
  1925. goto out;
  1926. }
  1927. }
  1928.  
  1929. /* Parse CA key and check signature */
  1930. if (sshkey_from_blob_internal(ca, &key->cert->signature_key, 0) != 0) {
  1931. ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
  1932. goto out;
  1933. }
  1934. if (!sshkey_type_is_valid_ca(key->cert->signature_key->type)) {
  1935. ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
  1936. goto out;
  1937. }
  1938. if ((ret = sshkey_verify(key->cert->signature_key, sig, slen,
  1939. sshbuf_ptr(key->cert->certblob), signed_len, 0)) != 0)
  1940. goto out;
  1941.  
  1942. /* Success */
  1943. ret = 0;
  1944. out:
  1945. sshbuf_free(ca);
  1946. sshbuf_free(crit);
  1947. sshbuf_free(exts);
  1948. sshbuf_free(principals);
  1949. free(sig);
  1950. return ret;
  1951. }
  1952.  
  1953. static int
  1954. sshkey_from_blob_internal(struct sshbuf *b, struct sshkey **keyp,
  1955. int allow_cert)
  1956. {
  1957. int type, ret = SSH_ERR_INTERNAL_ERROR;
  1958. char *ktype = NULL, *curve = NULL;
  1959. struct sshkey *key = NULL;
  1960. size_t len;
  1961. u_char *pk = NULL;
  1962. struct sshbuf *copy;
  1963. #if defined(WITH_OPENSSL) && defined(OPENSSL_HAS_ECC)
  1964. EC_POINT *q = NULL;
  1965. #endif /* WITH_OPENSSL && OPENSSL_HAS_ECC */
  1966.  
  1967. #ifdef DEBUG_PK /* XXX */
  1968. sshbuf_dump(b, stderr);
  1969. #endif
  1970. if (keyp != NULL)
  1971. *keyp = NULL;
  1972. if ((copy = sshbuf_fromb(b)) == NULL) {
  1973. ret = SSH_ERR_ALLOC_FAIL;
  1974. goto out;
  1975. }
  1976. if (sshbuf_get_cstring(b, &ktype, NULL) != 0) {
  1977. ret = SSH_ERR_INVALID_FORMAT;
  1978. goto out;
  1979. }
  1980.  
  1981. type = sshkey_type_from_name(ktype);
  1982. if (!allow_cert && sshkey_type_is_cert(type)) {
  1983. ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
  1984. goto out;
  1985. }
  1986. switch (type) {
  1987. #ifdef WITH_OPENSSL
  1988. case KEY_RSA_CERT:
  1989. /* Skip nonce */
  1990. if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
  1991. ret = SSH_ERR_INVALID_FORMAT;
  1992. goto out;
  1993. }
  1994. /* FALLTHROUGH */
  1995. case KEY_RSA:
  1996. if ((key = sshkey_new(type)) == NULL) {
  1997. ret = SSH_ERR_ALLOC_FAIL;
  1998. goto out;
  1999. }
  2000. if (sshbuf_get_bignum2(b, key->rsa->e) != 0 ||
  2001. sshbuf_get_bignum2(b, key->rsa->n) != 0) {
  2002. ret = SSH_ERR_INVALID_FORMAT;
  2003. goto out;
  2004. }
  2005. #ifdef DEBUG_PK
  2006. RSA_print_fp(stderr, key->rsa, 8);
  2007. #endif
  2008. break;
  2009. case KEY_DSA_CERT:
  2010. /* Skip nonce */
  2011. if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
  2012. ret = SSH_ERR_INVALID_FORMAT;
  2013. goto out;
  2014. }
  2015. /* FALLTHROUGH */
  2016. case KEY_DSA:
  2017. if ((key = sshkey_new(type)) == NULL) {
  2018. ret = SSH_ERR_ALLOC_FAIL;
  2019. goto out;
  2020. }
  2021. if (sshbuf_get_bignum2(b, key->dsa->p) != 0 ||
  2022. sshbuf_get_bignum2(b, key->dsa->q) != 0 ||
  2023. sshbuf_get_bignum2(b, key->dsa->g) != 0 ||
  2024. sshbuf_get_bignum2(b, key->dsa->pub_key) != 0) {
  2025. ret = SSH_ERR_INVALID_FORMAT;
  2026. goto out;
  2027. }
  2028. #ifdef DEBUG_PK
  2029. DSA_print_fp(stderr, key->dsa, 8);
  2030. #endif
  2031. break;
  2032. case KEY_ECDSA_CERT:
  2033. /* Skip nonce */
  2034. if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
  2035. ret = SSH_ERR_INVALID_FORMAT;
  2036. goto out;
  2037. }
  2038. /* FALLTHROUGH */
  2039. # ifdef OPENSSL_HAS_ECC
  2040. case KEY_ECDSA:
  2041. if ((key = sshkey_new(type)) == NULL) {
  2042. ret = SSH_ERR_ALLOC_FAIL;
  2043. goto out;
  2044. }
  2045. key->ecdsa_nid = sshkey_ecdsa_nid_from_name(ktype);
  2046. if (sshbuf_get_cstring(b, &curve, NULL) != 0) {
  2047. ret = SSH_ERR_INVALID_FORMAT;
  2048. goto out;
  2049. }
  2050. if (key->ecdsa_nid != sshkey_curve_name_to_nid(curve)) {
  2051. ret = SSH_ERR_EC_CURVE_MISMATCH;
  2052. goto out;
  2053. }
  2054. if (key->ecdsa != NULL)
  2055. EC_KEY_free(key->ecdsa);
  2056. if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid))
  2057. == NULL) {
  2058. ret = SSH_ERR_EC_CURVE_INVALID;
  2059. goto out;
  2060. }
  2061. if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) {
  2062. ret = SSH_ERR_ALLOC_FAIL;
  2063. goto out;
  2064. }
  2065. if (sshbuf_get_ec(b, q, EC_KEY_get0_group(key->ecdsa)) != 0) {
  2066. ret = SSH_ERR_INVALID_FORMAT;
  2067. goto out;
  2068. }
  2069. if (sshkey_ec_validate_public(EC_KEY_get0_group(key->ecdsa),
  2070. q) != 0) {
  2071. ret = SSH_ERR_KEY_INVALID_EC_VALUE;
  2072. goto out;
  2073. }
  2074. if (EC_KEY_set_public_key(key->ecdsa, q) != 1) {
  2075. /* XXX assume it is a allocation error */
  2076. ret = SSH_ERR_ALLOC_FAIL;
  2077. goto out;
  2078. }
  2079. #ifdef DEBUG_PK
  2080. sshkey_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q);
  2081. #endif
  2082. break;
  2083. # endif /* OPENSSL_HAS_ECC */
  2084. #endif /* WITH_OPENSSL */
  2085. case KEY_ED25519_CERT:
  2086. /* Skip nonce */
  2087. if (sshbuf_get_string_direct(b, NULL, NULL) != 0) {
  2088. ret = SSH_ERR_INVALID_FORMAT;
  2089. goto out;
  2090. }
  2091. /* FALLTHROUGH */
  2092. case KEY_ED25519:
  2093. if ((ret = sshbuf_get_string(b, &pk, &len)) != 0)
  2094. goto out;
  2095. if (len != ED25519_PK_SZ) {
  2096. ret = SSH_ERR_INVALID_FORMAT;
  2097. goto out;
  2098. }
  2099. if ((key = sshkey_new(type)) == NULL) {
  2100. ret = SSH_ERR_ALLOC_FAIL;
  2101. goto out;
  2102. }
  2103. key->ed25519_pk = pk;
  2104. pk = NULL;
  2105. break;
  2106. case KEY_UNSPEC:
  2107. if ((key = sshkey_new(type)) == NULL) {
  2108. ret = SSH_ERR_ALLOC_FAIL;
  2109. goto out;
  2110. }
  2111. break;
  2112. default:
  2113. ret = SSH_ERR_KEY_TYPE_UNKNOWN;
  2114. goto out;
  2115. }
  2116.  
  2117. /* Parse certificate potion */
  2118. if (sshkey_is_cert(key) && (ret = cert_parse(b, key, copy)) != 0)
  2119. goto out;
  2120.  
  2121. if (key != NULL && sshbuf_len(b) != 0) {
  2122. ret = SSH_ERR_INVALID_FORMAT;
  2123. goto out;
  2124. }
  2125. ret = 0;
  2126. if (keyp != NULL) {
  2127. *keyp = key;
  2128. key = NULL;
  2129. }
  2130. out:
  2131. sshbuf_free(copy);
  2132. sshkey_free(key);
  2133. free(ktype);
  2134. free(curve);
  2135. free(pk);
  2136. #if defined(WITH_OPENSSL) && defined(OPENSSL_HAS_ECC)
  2137. if (q != NULL)
  2138. EC_POINT_free(q);
  2139. #endif /* WITH_OPENSSL && OPENSSL_HAS_ECC */
  2140. return ret;
  2141. }
  2142.  
  2143. int
  2144. sshkey_from_blob(const u_char *blob, size_t blen, struct sshkey **keyp)
  2145. {
  2146. struct sshbuf *b;
  2147. int r;
  2148.  
  2149. if ((b = sshbuf_from(blob, blen)) == NULL)
  2150. return SSH_ERR_ALLOC_FAIL;
  2151. r = sshkey_from_blob_internal(b, keyp, 1);
  2152. sshbuf_free(b);
  2153. return r;
  2154. }
  2155.  
  2156. int
  2157. sshkey_fromb(struct sshbuf *b, struct sshkey **keyp)
  2158. {
  2159. return sshkey_from_blob_internal(b, keyp, 1);
  2160. }
  2161.  
  2162. int
  2163. sshkey_froms(struct sshbuf *buf, struct sshkey **keyp)
  2164. {
  2165. struct sshbuf *b;
  2166. int r;
  2167.  
  2168. if ((r = sshbuf_froms(buf, &b)) != 0)
  2169. return r;
  2170. r = sshkey_from_blob_internal(b, keyp, 1);
  2171. sshbuf_free(b);
  2172. return r;
  2173. }
  2174.  
  2175. int
  2176. sshkey_sign(const struct sshkey *key,
  2177. u_char **sigp, size_t *lenp,
  2178. const u_char *data, size_t datalen, const char *alg, u_int compat)
  2179. {
  2180. if (sigp != NULL)
  2181. *sigp = NULL;
  2182. if (lenp != NULL)
  2183. *lenp = 0;
  2184. if (datalen > SSH_KEY_MAX_SIGN_DATA_SIZE)
  2185. return SSH_ERR_INVALID_ARGUMENT;
  2186. switch (key->type) {
  2187. #ifdef WITH_OPENSSL
  2188. case KEY_DSA_CERT:
  2189. case KEY_DSA:
  2190. return ssh_dss_sign(key, sigp, lenp, data, datalen, compat);
  2191. # ifdef OPENSSL_HAS_ECC
  2192. case KEY_ECDSA_CERT:
  2193. case KEY_ECDSA:
  2194. return ssh_ecdsa_sign(key, sigp, lenp, data, datalen, compat);
  2195. # endif /* OPENSSL_HAS_ECC */
  2196. case KEY_RSA_CERT:
  2197. case KEY_RSA:
  2198. return ssh_rsa_sign(key, sigp, lenp, data, datalen, alg);
  2199. #endif /* WITH_OPENSSL */
  2200. case KEY_ED25519:
  2201. case KEY_ED25519_CERT:
  2202. return ssh_ed25519_sign(key, sigp, lenp, data, datalen, compat);
  2203. default:
  2204. return SSH_ERR_KEY_TYPE_UNKNOWN;
  2205. }
  2206. }
  2207.  
  2208. /*
  2209. * ssh_key_verify returns 0 for a correct signature and < 0 on error.
  2210. */
  2211. int
  2212. sshkey_verify(const struct sshkey *key,
  2213. const u_char *sig, size_t siglen,
  2214. const u_char *data, size_t dlen, u_int compat)
  2215. {
  2216. if (siglen == 0 || dlen > SSH_KEY_MAX_SIGN_DATA_SIZE)
  2217. return SSH_ERR_INVALID_ARGUMENT;
  2218. switch (key->type) {
  2219. #ifdef WITH_OPENSSL
  2220. case KEY_DSA_CERT:
  2221. case KEY_DSA:
  2222. return ssh_dss_verify(key, sig, siglen, data, dlen, compat);
  2223. # ifdef OPENSSL_HAS_ECC
  2224. case KEY_ECDSA_CERT:
  2225. case KEY_ECDSA:
  2226. return ssh_ecdsa_verify(key, sig, siglen, data, dlen, compat);
  2227. # endif /* OPENSSL_HAS_ECC */
  2228. case KEY_RSA_CERT:
  2229. case KEY_RSA:
  2230. return ssh_rsa_verify(key, sig, siglen, data, dlen);
  2231. #endif /* WITH_OPENSSL */
  2232. case KEY_ED25519:
  2233. case KEY_ED25519_CERT:
  2234. return ssh_ed25519_verify(key, sig, siglen, data, dlen, compat);
  2235. default:
  2236. return SSH_ERR_KEY_TYPE_UNKNOWN;
  2237. }
  2238. }
  2239.  
  2240. /* Converts a private to a public key */
  2241. int
  2242. sshkey_demote(const struct sshkey *k, struct sshkey **dkp)
  2243. {
  2244. struct sshkey *pk;
  2245. int ret = SSH_ERR_INTERNAL_ERROR;
  2246.  
  2247. *dkp = NULL;
  2248. if ((pk = calloc(1, sizeof(*pk))) == NULL)
  2249. return SSH_ERR_ALLOC_FAIL;
  2250. pk->type = k->type;
  2251. pk->flags = k->flags;
  2252. pk->ecdsa_nid = k->ecdsa_nid;
  2253. pk->dsa = NULL;
  2254. pk->ecdsa = NULL;
  2255. pk->rsa = NULL;
  2256. pk->ed25519_pk = NULL;
  2257. pk->ed25519_sk = NULL;
  2258.  
  2259. switch (k->type) {
  2260. #ifdef WITH_OPENSSL
  2261. case KEY_RSA_CERT:
  2262. if ((ret = sshkey_cert_copy(k, pk)) != 0)
  2263. goto fail;
  2264. /* FALLTHROUGH */
  2265. case KEY_RSA1:
  2266. case KEY_RSA:
  2267. if ((pk->rsa = RSA_new()) == NULL ||
  2268. (pk->rsa->e = BN_dup(k->rsa->e)) == NULL ||
  2269. (pk->rsa->n = BN_dup(k->rsa->n)) == NULL) {
  2270. ret = SSH_ERR_ALLOC_FAIL;
  2271. goto fail;
  2272. }
  2273. break;
  2274. case KEY_DSA_CERT:
  2275. if ((ret = sshkey_cert_copy(k, pk)) != 0)
  2276. goto fail;
  2277. /* FALLTHROUGH */
  2278. case KEY_DSA:
  2279. if ((pk->dsa = DSA_new()) == NULL ||
  2280. (pk->dsa->p = BN_dup(k->dsa->p)) == NULL ||
  2281. (pk->dsa->q = BN_dup(k->dsa->q)) == NULL ||
  2282. (pk->dsa->g = BN_dup(k->dsa->g)) == NULL ||
  2283. (pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) {
  2284. ret = SSH_ERR_ALLOC_FAIL;
  2285. goto fail;
  2286. }
  2287. break;
  2288. case KEY_ECDSA_CERT:
  2289. if ((ret = sshkey_cert_copy(k, pk)) != 0)
  2290. goto fail;
  2291. /* FALLTHROUGH */
  2292. # ifdef OPENSSL_HAS_ECC
  2293. case KEY_ECDSA:
  2294. pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid);
  2295. if (pk->ecdsa == NULL) {
  2296. ret = SSH_ERR_ALLOC_FAIL;
  2297. goto fail;
  2298. }
  2299. if (EC_KEY_set_public_key(pk->ecdsa,
  2300. EC_KEY_get0_public_key(k->ecdsa)) != 1) {
  2301. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2302. goto fail;
  2303. }
  2304. break;
  2305. # endif /* OPENSSL_HAS_ECC */
  2306. #endif /* WITH_OPENSSL */
  2307. case KEY_ED25519_CERT:
  2308. if ((ret = sshkey_cert_copy(k, pk)) != 0)
  2309. goto fail;
  2310. /* FALLTHROUGH */
  2311. case KEY_ED25519:
  2312. if (k->ed25519_pk != NULL) {
  2313. if ((pk->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL) {
  2314. ret = SSH_ERR_ALLOC_FAIL;
  2315. goto fail;
  2316. }
  2317. memcpy(pk->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ);
  2318. }
  2319. break;
  2320. default:
  2321. ret = SSH_ERR_KEY_TYPE_UNKNOWN;
  2322. fail:
  2323. sshkey_free(pk);
  2324. return ret;
  2325. }
  2326. *dkp = pk;
  2327. return 0;
  2328. }
  2329.  
  2330. /* Convert a plain key to their _CERT equivalent */
  2331. int
  2332. sshkey_to_certified(struct sshkey *k)
  2333. {
  2334. int newtype;
  2335.  
  2336. switch (k->type) {
  2337. #ifdef WITH_OPENSSL
  2338. case KEY_RSA:
  2339. newtype = KEY_RSA_CERT;
  2340. break;
  2341. case KEY_DSA:
  2342. newtype = KEY_DSA_CERT;
  2343. break;
  2344. case KEY_ECDSA:
  2345. newtype = KEY_ECDSA_CERT;
  2346. break;
  2347. #endif /* WITH_OPENSSL */
  2348. case KEY_ED25519:
  2349. newtype = KEY_ED25519_CERT;
  2350. break;
  2351. default:
  2352. return SSH_ERR_INVALID_ARGUMENT;
  2353. }
  2354. if ((k->cert = cert_new()) == NULL)
  2355. return SSH_ERR_ALLOC_FAIL;
  2356. k->type = newtype;
  2357. return 0;
  2358. }
  2359.  
  2360. /* Convert a certificate to its raw key equivalent */
  2361. int
  2362. sshkey_drop_cert(struct sshkey *k)
  2363. {
  2364. if (!sshkey_type_is_cert(k->type))
  2365. return SSH_ERR_KEY_TYPE_UNKNOWN;
  2366. cert_free(k->cert);
  2367. k->cert = NULL;
  2368. k->type = sshkey_type_plain(k->type);
  2369. return 0;
  2370. }
  2371.  
  2372. /* Sign a certified key, (re-)generating the signed certblob. */
  2373. int
  2374. sshkey_certify(struct sshkey *k, struct sshkey *ca, const char *alg)
  2375. {
  2376. struct sshbuf *principals = NULL;
  2377. u_char *ca_blob = NULL, *sig_blob = NULL, nonce[32];
  2378. size_t i, ca_len, sig_len;
  2379. int ret = SSH_ERR_INTERNAL_ERROR;
  2380. struct sshbuf *cert;
  2381.  
  2382. if (k == NULL || k->cert == NULL ||
  2383. k->cert->certblob == NULL || ca == NULL)
  2384. return SSH_ERR_INVALID_ARGUMENT;
  2385. if (!sshkey_is_cert(k))
  2386. return SSH_ERR_KEY_TYPE_UNKNOWN;
  2387. if (!sshkey_type_is_valid_ca(ca->type))
  2388. return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
  2389.  
  2390. if ((ret = sshkey_to_blob(ca, &ca_blob, &ca_len)) != 0)
  2391. return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY;
  2392.  
  2393. cert = k->cert->certblob; /* for readability */
  2394. sshbuf_reset(cert);
  2395. if ((ret = sshbuf_put_cstring(cert, sshkey_ssh_name(k))) != 0)
  2396. goto out;
  2397.  
  2398. /* -v01 certs put nonce first */
  2399. arc4random_buf(&nonce, sizeof(nonce));
  2400. if ((ret = sshbuf_put_string(cert, nonce, sizeof(nonce))) != 0)
  2401. goto out;
  2402.  
  2403. /* XXX this substantially duplicates to_blob(); refactor */
  2404. switch (k->type) {
  2405. #ifdef WITH_OPENSSL
  2406. case KEY_DSA_CERT:
  2407. if ((ret = sshbuf_put_bignum2(cert, k->dsa->p)) != 0 ||
  2408. (ret = sshbuf_put_bignum2(cert, k->dsa->q)) != 0 ||
  2409. (ret = sshbuf_put_bignum2(cert, k->dsa->g)) != 0 ||
  2410. (ret = sshbuf_put_bignum2(cert, k->dsa->pub_key)) != 0)
  2411. goto out;
  2412. break;
  2413. # ifdef OPENSSL_HAS_ECC
  2414. case KEY_ECDSA_CERT:
  2415. if ((ret = sshbuf_put_cstring(cert,
  2416. sshkey_curve_nid_to_name(k->ecdsa_nid))) != 0 ||
  2417. (ret = sshbuf_put_ec(cert,
  2418. EC_KEY_get0_public_key(k->ecdsa),
  2419. EC_KEY_get0_group(k->ecdsa))) != 0)
  2420. goto out;
  2421. break;
  2422. # endif /* OPENSSL_HAS_ECC */
  2423. case KEY_RSA_CERT:
  2424. if ((ret = sshbuf_put_bignum2(cert, k->rsa->e)) != 0 ||
  2425. (ret = sshbuf_put_bignum2(cert, k->rsa->n)) != 0)
  2426. goto out;
  2427. break;
  2428. #endif /* WITH_OPENSSL */
  2429. case KEY_ED25519_CERT:
  2430. if ((ret = sshbuf_put_string(cert,
  2431. k->ed25519_pk, ED25519_PK_SZ)) != 0)
  2432. goto out;
  2433. break;
  2434. default:
  2435. ret = SSH_ERR_INVALID_ARGUMENT;
  2436. goto out;
  2437. }
  2438.  
  2439. if ((ret = sshbuf_put_u64(cert, k->cert->serial)) != 0 ||
  2440. (ret = sshbuf_put_u32(cert, k->cert->type)) != 0 ||
  2441. (ret = sshbuf_put_cstring(cert, k->cert->key_id)) != 0)
  2442. goto out;
  2443.  
  2444. if ((principals = sshbuf_new()) == NULL) {
  2445. ret = SSH_ERR_ALLOC_FAIL;
  2446. goto out;
  2447. }
  2448. for (i = 0; i < k->cert->nprincipals; i++) {
  2449. if ((ret = sshbuf_put_cstring(principals,
  2450. k->cert->principals[i])) != 0)
  2451. goto out;
  2452. }
  2453. if ((ret = sshbuf_put_stringb(cert, principals)) != 0 ||
  2454. (ret = sshbuf_put_u64(cert, k->cert->valid_after)) != 0 ||
  2455. (ret = sshbuf_put_u64(cert, k->cert->valid_before)) != 0 ||
  2456. (ret = sshbuf_put_stringb(cert, k->cert->critical)) != 0 ||
  2457. (ret = sshbuf_put_stringb(cert, k->cert->extensions)) != 0 ||
  2458. (ret = sshbuf_put_string(cert, NULL, 0)) != 0 || /* Reserved */
  2459. (ret = sshbuf_put_string(cert, ca_blob, ca_len)) != 0)
  2460. goto out;
  2461.  
  2462. /* Sign the whole mess */
  2463. if ((ret = sshkey_sign(ca, &sig_blob, &sig_len, sshbuf_ptr(cert),
  2464. sshbuf_len(cert), alg, 0)) != 0)
  2465. goto out;
  2466.  
  2467. /* Append signature and we are done */
  2468. if ((ret = sshbuf_put_string(cert, sig_blob, sig_len)) != 0)
  2469. goto out;
  2470. ret = 0;
  2471. out:
  2472. if (ret != 0)
  2473. sshbuf_reset(cert);
  2474. free(sig_blob);
  2475. free(ca_blob);
  2476. sshbuf_free(principals);
  2477. return ret;
  2478. }
  2479.  
  2480. int
  2481. sshkey_cert_check_authority(const struct sshkey *k,
  2482. int want_host, int require_principal,
  2483. const char *name, const char **reason)
  2484. {
  2485. u_int i, principal_matches;
  2486. time_t now = time(NULL);
  2487.  
  2488. if (reason != NULL)
  2489. *reason = NULL;
  2490.  
  2491. if (want_host) {
  2492. if (k->cert->type != SSH2_CERT_TYPE_HOST) {
  2493. *reason = "Certificate invalid: not a host certificate";
  2494. return SSH_ERR_KEY_CERT_INVALID;
  2495. }
  2496. } else {
  2497. if (k->cert->type != SSH2_CERT_TYPE_USER) {
  2498. *reason = "Certificate invalid: not a user certificate";
  2499. return SSH_ERR_KEY_CERT_INVALID;
  2500. }
  2501. }
  2502. if (now < 0) {
  2503. /* yikes - system clock before epoch! */
  2504. *reason = "Certificate invalid: not yet valid";
  2505. return SSH_ERR_KEY_CERT_INVALID;
  2506. }
  2507. if ((u_int64_t)now < k->cert->valid_after) {
  2508. *reason = "Certificate invalid: not yet valid";
  2509. return SSH_ERR_KEY_CERT_INVALID;
  2510. }
  2511. if ((u_int64_t)now >= k->cert->valid_before) {
  2512. *reason = "Certificate invalid: expired";
  2513. return SSH_ERR_KEY_CERT_INVALID;
  2514. }
  2515. if (k->cert->nprincipals == 0) {
  2516. if (require_principal) {
  2517. *reason = "Certificate lacks principal list";
  2518. return SSH_ERR_KEY_CERT_INVALID;
  2519. }
  2520. } else if (name != NULL) {
  2521. principal_matches = 0;
  2522. for (i = 0; i < k->cert->nprincipals; i++) {
  2523. if (strcmp(name, k->cert->principals[i]) == 0) {
  2524. principal_matches = 1;
  2525. break;
  2526. }
  2527. }
  2528. if (!principal_matches) {
  2529. *reason = "Certificate invalid: name is not a listed "
  2530. "principal";
  2531. return SSH_ERR_KEY_CERT_INVALID;
  2532. }
  2533. }
  2534. return 0;
  2535. }
  2536.  
  2537. size_t
  2538. sshkey_format_cert_validity(const struct sshkey_cert *cert, char *s, size_t l)
  2539. {
  2540. char from[32], to[32], ret[64];
  2541. time_t tt;
  2542. struct tm *tm;
  2543.  
  2544. *from = *to = '\0';
  2545. if (cert->valid_after == 0 &&
  2546. cert->valid_before == 0xffffffffffffffffULL)
  2547. return strlcpy(s, "forever", l);
  2548.  
  2549. if (cert->valid_after != 0) {
  2550. /* XXX revisit INT_MAX in 2038 :) */
  2551. tt = cert->valid_after > INT_MAX ?
  2552. INT_MAX : cert->valid_after;
  2553. tm = localtime(&tt);
  2554. strftime(from, sizeof(from), "%Y-%m-%dT%H:%M:%S", tm);
  2555. }
  2556. if (cert->valid_before != 0xffffffffffffffffULL) {
  2557. /* XXX revisit INT_MAX in 2038 :) */
  2558. tt = cert->valid_before > INT_MAX ?
  2559. INT_MAX : cert->valid_before;
  2560. tm = localtime(&tt);
  2561. strftime(to, sizeof(to), "%Y-%m-%dT%H:%M:%S", tm);
  2562. }
  2563.  
  2564. if (cert->valid_after == 0)
  2565. snprintf(ret, sizeof(ret), "before %s", to);
  2566. else if (cert->valid_before == 0xffffffffffffffffULL)
  2567. snprintf(ret, sizeof(ret), "after %s", from);
  2568. else
  2569. snprintf(ret, sizeof(ret), "from %s to %s", from, to);
  2570.  
  2571. return strlcpy(s, ret, l);
  2572. }
  2573.  
  2574. int
  2575. sshkey_private_serialize(const struct sshkey *key, struct sshbuf *b)
  2576. {
  2577. int r = SSH_ERR_INTERNAL_ERROR;
  2578.  
  2579. if ((r = sshbuf_put_cstring(b, sshkey_ssh_name(key))) != 0)
  2580. goto out;
  2581. switch (key->type) {
  2582. #ifdef WITH_OPENSSL
  2583. case KEY_RSA:
  2584. if ((r = sshbuf_put_bignum2(b, key->rsa->n)) != 0 ||
  2585. (r = sshbuf_put_bignum2(b, key->rsa->e)) != 0 ||
  2586. (r = sshbuf_put_bignum2(b, key->rsa->d)) != 0 ||
  2587. (r = sshbuf_put_bignum2(b, key->rsa->iqmp)) != 0 ||
  2588. (r = sshbuf_put_bignum2(b, key->rsa->p)) != 0 ||
  2589. (r = sshbuf_put_bignum2(b, key->rsa->q)) != 0)
  2590. goto out;
  2591. break;
  2592. case KEY_RSA_CERT:
  2593. if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) {
  2594. r = SSH_ERR_INVALID_ARGUMENT;
  2595. goto out;
  2596. }
  2597. if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 ||
  2598. (r = sshbuf_put_bignum2(b, key->rsa->d)) != 0 ||
  2599. (r = sshbuf_put_bignum2(b, key->rsa->iqmp)) != 0 ||
  2600. (r = sshbuf_put_bignum2(b, key->rsa->p)) != 0 ||
  2601. (r = sshbuf_put_bignum2(b, key->rsa->q)) != 0)
  2602. goto out;
  2603. break;
  2604. case KEY_DSA:
  2605. if ((r = sshbuf_put_bignum2(b, key->dsa->p)) != 0 ||
  2606. (r = sshbuf_put_bignum2(b, key->dsa->q)) != 0 ||
  2607. (r = sshbuf_put_bignum2(b, key->dsa->g)) != 0 ||
  2608. (r = sshbuf_put_bignum2(b, key->dsa->pub_key)) != 0 ||
  2609. (r = sshbuf_put_bignum2(b, key->dsa->priv_key)) != 0)
  2610. goto out;
  2611. break;
  2612. case KEY_DSA_CERT:
  2613. if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) {
  2614. r = SSH_ERR_INVALID_ARGUMENT;
  2615. goto out;
  2616. }
  2617. if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 ||
  2618. (r = sshbuf_put_bignum2(b, key->dsa->priv_key)) != 0)
  2619. goto out;
  2620. break;
  2621. # ifdef OPENSSL_HAS_ECC
  2622. case KEY_ECDSA:
  2623. if ((r = sshbuf_put_cstring(b,
  2624. sshkey_curve_nid_to_name(key->ecdsa_nid))) != 0 ||
  2625. (r = sshbuf_put_eckey(b, key->ecdsa)) != 0 ||
  2626. (r = sshbuf_put_bignum2(b,
  2627. EC_KEY_get0_private_key(key->ecdsa))) != 0)
  2628. goto out;
  2629. break;
  2630. case KEY_ECDSA_CERT:
  2631. if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) {
  2632. r = SSH_ERR_INVALID_ARGUMENT;
  2633. goto out;
  2634. }
  2635. if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 ||
  2636. (r = sshbuf_put_bignum2(b,
  2637. EC_KEY_get0_private_key(key->ecdsa))) != 0)
  2638. goto out;
  2639. break;
  2640. # endif /* OPENSSL_HAS_ECC */
  2641. #endif /* WITH_OPENSSL */
  2642. case KEY_ED25519:
  2643. if ((r = sshbuf_put_string(b, key->ed25519_pk,
  2644. ED25519_PK_SZ)) != 0 ||
  2645. (r = sshbuf_put_string(b, key->ed25519_sk,
  2646. ED25519_SK_SZ)) != 0)
  2647. goto out;
  2648. break;
  2649. case KEY_ED25519_CERT:
  2650. if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) {
  2651. r = SSH_ERR_INVALID_ARGUMENT;
  2652. goto out;
  2653. }
  2654. if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 ||
  2655. (r = sshbuf_put_string(b, key->ed25519_pk,
  2656. ED25519_PK_SZ)) != 0 ||
  2657. (r = sshbuf_put_string(b, key->ed25519_sk,
  2658. ED25519_SK_SZ)) != 0)
  2659. goto out;
  2660. break;
  2661. default:
  2662. r = SSH_ERR_INVALID_ARGUMENT;
  2663. goto out;
  2664. }
  2665. /* success */
  2666. r = 0;
  2667. out:
  2668. return r;
  2669. }
  2670.  
  2671. int
  2672. sshkey_private_deserialize(struct sshbuf *buf, struct sshkey **kp)
  2673. {
  2674. char *tname = NULL, *curve = NULL;
  2675. struct sshkey *k = NULL;
  2676. size_t pklen = 0, sklen = 0;
  2677. int type, r = SSH_ERR_INTERNAL_ERROR;
  2678. u_char *ed25519_pk = NULL, *ed25519_sk = NULL;
  2679. #ifdef WITH_OPENSSL
  2680. BIGNUM *exponent = NULL;
  2681. #endif /* WITH_OPENSSL */
  2682.  
  2683. if (kp != NULL)
  2684. *kp = NULL;
  2685. if ((r = sshbuf_get_cstring(buf, &tname, NULL)) != 0)
  2686. goto out;
  2687. type = sshkey_type_from_name(tname);
  2688. switch (type) {
  2689. #ifdef WITH_OPENSSL
  2690. case KEY_DSA:
  2691. if ((k = sshkey_new_private(type)) == NULL) {
  2692. r = SSH_ERR_ALLOC_FAIL;
  2693. goto out;
  2694. }
  2695. if ((r = sshbuf_get_bignum2(buf, k->dsa->p)) != 0 ||
  2696. (r = sshbuf_get_bignum2(buf, k->dsa->q)) != 0 ||
  2697. (r = sshbuf_get_bignum2(buf, k->dsa->g)) != 0 ||
  2698. (r = sshbuf_get_bignum2(buf, k->dsa->pub_key)) != 0 ||
  2699. (r = sshbuf_get_bignum2(buf, k->dsa->priv_key)) != 0)
  2700. goto out;
  2701. break;
  2702. case KEY_DSA_CERT:
  2703. if ((r = sshkey_froms(buf, &k)) != 0 ||
  2704. (r = sshkey_add_private(k)) != 0 ||
  2705. (r = sshbuf_get_bignum2(buf, k->dsa->priv_key)) != 0)
  2706. goto out;
  2707. break;
  2708. # ifdef OPENSSL_HAS_ECC
  2709. case KEY_ECDSA:
  2710. if ((k = sshkey_new_private(type)) == NULL) {
  2711. r = SSH_ERR_ALLOC_FAIL;
  2712. goto out;
  2713. }
  2714. if ((k->ecdsa_nid = sshkey_ecdsa_nid_from_name(tname)) == -1) {
  2715. r = SSH_ERR_INVALID_ARGUMENT;
  2716. goto out;
  2717. }
  2718. if ((r = sshbuf_get_cstring(buf, &curve, NULL)) != 0)
  2719. goto out;
  2720. if (k->ecdsa_nid != sshkey_curve_name_to_nid(curve)) {
  2721. r = SSH_ERR_EC_CURVE_MISMATCH;
  2722. goto out;
  2723. }
  2724. k->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid);
  2725. if (k->ecdsa == NULL || (exponent = BN_new()) == NULL) {
  2726. r = SSH_ERR_LIBCRYPTO_ERROR;
  2727. goto out;
  2728. }
  2729. if ((r = sshbuf_get_eckey(buf, k->ecdsa)) != 0 ||
  2730. (r = sshbuf_get_bignum2(buf, exponent)))
  2731. goto out;
  2732. if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) {
  2733. r = SSH_ERR_LIBCRYPTO_ERROR;
  2734. goto out;
  2735. }
  2736. if ((r = sshkey_ec_validate_public(EC_KEY_get0_group(k->ecdsa),
  2737. EC_KEY_get0_public_key(k->ecdsa))) != 0 ||
  2738. (r = sshkey_ec_validate_private(k->ecdsa)) != 0)
  2739. goto out;
  2740. break;
  2741. case KEY_ECDSA_CERT:
  2742. if ((exponent = BN_new()) == NULL) {
  2743. r = SSH_ERR_LIBCRYPTO_ERROR;
  2744. goto out;
  2745. }
  2746. if ((r = sshkey_froms(buf, &k)) != 0 ||
  2747. (r = sshkey_add_private(k)) != 0 ||
  2748. (r = sshbuf_get_bignum2(buf, exponent)) != 0)
  2749. goto out;
  2750. if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) {
  2751. r = SSH_ERR_LIBCRYPTO_ERROR;
  2752. goto out;
  2753. }
  2754. if ((r = sshkey_ec_validate_public(EC_KEY_get0_group(k->ecdsa),
  2755. EC_KEY_get0_public_key(k->ecdsa))) != 0 ||
  2756. (r = sshkey_ec_validate_private(k->ecdsa)) != 0)
  2757. goto out;
  2758. break;
  2759. # endif /* OPENSSL_HAS_ECC */
  2760. case KEY_RSA:
  2761. if ((k = sshkey_new_private(type)) == NULL) {
  2762. r = SSH_ERR_ALLOC_FAIL;
  2763. goto out;
  2764. }
  2765. if ((r = sshbuf_get_bignum2(buf, k->rsa->n)) != 0 ||
  2766. (r = sshbuf_get_bignum2(buf, k->rsa->e)) != 0 ||
  2767. (r = sshbuf_get_bignum2(buf, k->rsa->d)) != 0 ||
  2768. (r = sshbuf_get_bignum2(buf, k->rsa->iqmp)) != 0 ||
  2769. (r = sshbuf_get_bignum2(buf, k->rsa->p)) != 0 ||
  2770. (r = sshbuf_get_bignum2(buf, k->rsa->q)) != 0 ||
  2771. (r = rsa_generate_additional_parameters(k->rsa)) != 0)
  2772. goto out;
  2773. break;
  2774. case KEY_RSA_CERT:
  2775. if ((r = sshkey_froms(buf, &k)) != 0 ||
  2776. (r = sshkey_add_private(k)) != 0 ||
  2777. (r = sshbuf_get_bignum2(buf, k->rsa->d)) != 0 ||
  2778. (r = sshbuf_get_bignum2(buf, k->rsa->iqmp)) != 0 ||
  2779. (r = sshbuf_get_bignum2(buf, k->rsa->p)) != 0 ||
  2780. (r = sshbuf_get_bignum2(buf, k->rsa->q)) != 0 ||
  2781. (r = rsa_generate_additional_parameters(k->rsa)) != 0)
  2782. goto out;
  2783. break;
  2784. #endif /* WITH_OPENSSL */
  2785. case KEY_ED25519:
  2786. if ((k = sshkey_new_private(type)) == NULL) {
  2787. r = SSH_ERR_ALLOC_FAIL;
  2788. goto out;
  2789. }
  2790. if ((r = sshbuf_get_string(buf, &ed25519_pk, &pklen)) != 0 ||
  2791. (r = sshbuf_get_string(buf, &ed25519_sk, &sklen)) != 0)
  2792. goto out;
  2793. if (pklen != ED25519_PK_SZ || sklen != ED25519_SK_SZ) {
  2794. r = SSH_ERR_INVALID_FORMAT;
  2795. goto out;
  2796. }
  2797. k->ed25519_pk = ed25519_pk;
  2798. k->ed25519_sk = ed25519_sk;
  2799. ed25519_pk = ed25519_sk = NULL;
  2800. break;
  2801. case KEY_ED25519_CERT:
  2802. if ((r = sshkey_froms(buf, &k)) != 0 ||
  2803. (r = sshkey_add_private(k)) != 0 ||
  2804. (r = sshbuf_get_string(buf, &ed25519_pk, &pklen)) != 0 ||
  2805. (r = sshbuf_get_string(buf, &ed25519_sk, &sklen)) != 0)
  2806. goto out;
  2807. if (pklen != ED25519_PK_SZ || sklen != ED25519_SK_SZ) {
  2808. r = SSH_ERR_INVALID_FORMAT;
  2809. goto out;
  2810. }
  2811. k->ed25519_pk = ed25519_pk;
  2812. k->ed25519_sk = ed25519_sk;
  2813. ed25519_pk = ed25519_sk = NULL;
  2814. break;
  2815. default:
  2816. r = SSH_ERR_KEY_TYPE_UNKNOWN;
  2817. goto out;
  2818. }
  2819. #ifdef WITH_OPENSSL
  2820. /* enable blinding */
  2821. switch (k->type) {
  2822. case KEY_RSA:
  2823. case KEY_RSA_CERT:
  2824. case KEY_RSA1:
  2825. if (RSA_blinding_on(k->rsa, NULL) != 1) {
  2826. r = SSH_ERR_LIBCRYPTO_ERROR;
  2827. goto out;
  2828. }
  2829. break;
  2830. }
  2831. #endif /* WITH_OPENSSL */
  2832. /* success */
  2833. r = 0;
  2834. if (kp != NULL) {
  2835. *kp = k;
  2836. k = NULL;
  2837. }
  2838. out:
  2839. free(tname);
  2840. free(curve);
  2841. #ifdef WITH_OPENSSL
  2842. if (exponent != NULL)
  2843. BN_clear_free(exponent);
  2844. #endif /* WITH_OPENSSL */
  2845. sshkey_free(k);
  2846. if (ed25519_pk != NULL) {
  2847. explicit_bzero(ed25519_pk, pklen);
  2848. free(ed25519_pk);
  2849. }
  2850. if (ed25519_sk != NULL) {
  2851. explicit_bzero(ed25519_sk, sklen);
  2852. free(ed25519_sk);
  2853. }
  2854. return r;
  2855. }
  2856.  
  2857. #if defined(WITH_OPENSSL) && defined(OPENSSL_HAS_ECC)
  2858. int
  2859. sshkey_ec_validate_public(const EC_GROUP *group, const EC_POINT *public)
  2860. {
  2861. BN_CTX *bnctx;
  2862. EC_POINT *nq = NULL;
  2863. BIGNUM *order, *x, *y, *tmp;
  2864. int ret = SSH_ERR_KEY_INVALID_EC_VALUE;
  2865.  
  2866. /*
  2867. * NB. This assumes OpenSSL has already verified that the public
  2868. * point lies on the curve. This is done by EC_POINT_oct2point()
  2869. * implicitly calling EC_POINT_is_on_curve(). If this code is ever
  2870. * reachable with public points not unmarshalled using
  2871. * EC_POINT_oct2point then the caller will need to explicitly check.
  2872. */
  2873.  
  2874. if ((bnctx = BN_CTX_new()) == NULL)
  2875. return SSH_ERR_ALLOC_FAIL;
  2876. BN_CTX_start(bnctx);
  2877.  
  2878. /*
  2879. * We shouldn't ever hit this case because bignum_get_ecpoint()
  2880. * refuses to load GF2m points.
  2881. */
  2882. if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
  2883. NID_X9_62_prime_field)
  2884. goto out;
  2885.  
  2886. /* Q != infinity */
  2887. if (EC_POINT_is_at_infinity(group, public))
  2888. goto out;
  2889.  
  2890. if ((x = BN_CTX_get(bnctx)) == NULL ||
  2891. (y = BN_CTX_get(bnctx)) == NULL ||
  2892. (order = BN_CTX_get(bnctx)) == NULL ||
  2893. (tmp = BN_CTX_get(bnctx)) == NULL) {
  2894. ret = SSH_ERR_ALLOC_FAIL;
  2895. goto out;
  2896. }
  2897.  
  2898. /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */
  2899. if (EC_GROUP_get_order(group, order, bnctx) != 1 ||
  2900. EC_POINT_get_affine_coordinates_GFp(group, public,
  2901. x, y, bnctx) != 1) {
  2902. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2903. goto out;
  2904. }
  2905. if (BN_num_bits(x) <= BN_num_bits(order) / 2 ||
  2906. BN_num_bits(y) <= BN_num_bits(order) / 2)
  2907. goto out;
  2908.  
  2909. /* nQ == infinity (n == order of subgroup) */
  2910. if ((nq = EC_POINT_new(group)) == NULL) {
  2911. ret = SSH_ERR_ALLOC_FAIL;
  2912. goto out;
  2913. }
  2914. if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1) {
  2915. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2916. goto out;
  2917. }
  2918. if (EC_POINT_is_at_infinity(group, nq) != 1)
  2919. goto out;
  2920.  
  2921. /* x < order - 1, y < order - 1 */
  2922. if (!BN_sub(tmp, order, BN_value_one())) {
  2923. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2924. goto out;
  2925. }
  2926. if (BN_cmp(x, tmp) >= 0 || BN_cmp(y, tmp) >= 0)
  2927. goto out;
  2928. ret = 0;
  2929. out:
  2930. BN_CTX_free(bnctx);
  2931. if (nq != NULL)
  2932. EC_POINT_free(nq);
  2933. return ret;
  2934. }
  2935.  
  2936. int
  2937. sshkey_ec_validate_private(const EC_KEY *key)
  2938. {
  2939. BN_CTX *bnctx;
  2940. BIGNUM *order, *tmp;
  2941. int ret = SSH_ERR_KEY_INVALID_EC_VALUE;
  2942.  
  2943. if ((bnctx = BN_CTX_new()) == NULL)
  2944. return SSH_ERR_ALLOC_FAIL;
  2945. BN_CTX_start(bnctx);
  2946.  
  2947. if ((order = BN_CTX_get(bnctx)) == NULL ||
  2948. (tmp = BN_CTX_get(bnctx)) == NULL) {
  2949. ret = SSH_ERR_ALLOC_FAIL;
  2950. goto out;
  2951. }
  2952.  
  2953. /* log2(private) > log2(order)/2 */
  2954. if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1) {
  2955. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2956. goto out;
  2957. }
  2958. if (BN_num_bits(EC_KEY_get0_private_key(key)) <=
  2959. BN_num_bits(order) / 2)
  2960. goto out;
  2961.  
  2962. /* private < order - 1 */
  2963. if (!BN_sub(tmp, order, BN_value_one())) {
  2964. ret = SSH_ERR_LIBCRYPTO_ERROR;
  2965. goto out;
  2966. }
  2967. if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0)
  2968. goto out;
  2969. ret = 0;
  2970. out:
  2971. BN_CTX_free(bnctx);
  2972. return ret;
  2973. }
  2974.  
  2975. void
  2976. sshkey_dump_ec_point(const EC_GROUP *group, const EC_POINT *point)
  2977. {
  2978. BIGNUM *x, *y;
  2979. BN_CTX *bnctx;
  2980.  
  2981. if (point == NULL) {
  2982. fputs("point=(NULL)\n", stderr);
  2983. return;
  2984. }
  2985. if ((bnctx = BN_CTX_new()) == NULL) {
  2986. fprintf(stderr, "%s: BN_CTX_new failed\n", __func__);
  2987. return;
  2988. }
  2989. BN_CTX_start(bnctx);
  2990. if ((x = BN_CTX_get(bnctx)) == NULL ||
  2991. (y = BN_CTX_get(bnctx)) == NULL) {
  2992. fprintf(stderr, "%s: BN_CTX_get failed\n", __func__);
  2993. return;
  2994. }
  2995. if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) !=
  2996. NID_X9_62_prime_field) {
  2997. fprintf(stderr, "%s: group is not a prime field\n", __func__);
  2998. return;
  2999. }
  3000. if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y,
  3001. bnctx) != 1) {
  3002. fprintf(stderr, "%s: EC_POINT_get_affine_coordinates_GFp\n",
  3003. __func__);
  3004. return;
  3005. }
  3006. fputs("x=", stderr);
  3007. BN_print_fp(stderr, x);
  3008. fputs("\ny=", stderr);
  3009. BN_print_fp(stderr, y);
  3010. fputs("\n", stderr);
  3011. BN_CTX_free(bnctx);
  3012. }
  3013.  
  3014. void
  3015. sshkey_dump_ec_key(const EC_KEY *key)
  3016. {
  3017. const BIGNUM *exponent;
  3018.  
  3019. sshkey_dump_ec_point(EC_KEY_get0_group(key),
  3020. EC_KEY_get0_public_key(key));
  3021. fputs("exponent=", stderr);
  3022. if ((exponent = EC_KEY_get0_private_key(key)) == NULL)
  3023. fputs("(NULL)", stderr);
  3024. else
  3025. BN_print_fp(stderr, EC_KEY_get0_private_key(key));
  3026. fputs("\n", stderr);
  3027. }
  3028. #endif /* WITH_OPENSSL && OPENSSL_HAS_ECC */
  3029.  
  3030. static int
  3031. sshkey_private_to_blob2(const struct sshkey *prv, struct sshbuf *blob,
  3032. const char *passphrase, const char *comment, const char *ciphername,
  3033. int rounds)
  3034. {
  3035. u_char *cp, *key = NULL, *pubkeyblob = NULL;
  3036. u_char salt[SALT_LEN];
  3037. char *b64 = NULL;
  3038. size_t i, pubkeylen, keylen, ivlen, blocksize, authlen;
  3039. u_int check;
  3040. int r = SSH_ERR_INTERNAL_ERROR;
  3041. struct sshcipher_ctx *ciphercontext = NULL;
  3042. const struct sshcipher *cipher;
  3043. const char *kdfname = KDFNAME;
  3044. struct sshbuf *encoded = NULL, *encrypted = NULL, *kdf = NULL;
  3045.  
  3046. if (rounds <= 0)
  3047. rounds = DEFAULT_ROUNDS;
  3048. if (passphrase == NULL || !strlen(passphrase)) {
  3049. ciphername = "none";
  3050. kdfname = "none";
  3051. } else if (ciphername == NULL)
  3052. ciphername = DEFAULT_CIPHERNAME;
  3053. else if (cipher_number(ciphername) != SSH_CIPHER_SSH2) {
  3054. r = SSH_ERR_INVALID_ARGUMENT;
  3055. goto out;
  3056. }
  3057. if ((cipher = cipher_by_name(ciphername)) == NULL) {
  3058. r = SSH_ERR_INTERNAL_ERROR;
  3059. goto out;
  3060. }
  3061.  
  3062. if ((kdf = sshbuf_new()) == NULL ||
  3063. (encoded = sshbuf_new()) == NULL ||
  3064. (encrypted = sshbuf_new()) == NULL) {
  3065. r = SSH_ERR_ALLOC_FAIL;
  3066. goto out;
  3067. }
  3068. blocksize = cipher_blocksize(cipher);
  3069. keylen = cipher_keylen(cipher);
  3070. ivlen = cipher_ivlen(cipher);
  3071. authlen = cipher_authlen(cipher);
  3072. if ((key = calloc(1, keylen + ivlen)) == NULL) {
  3073. r = SSH_ERR_ALLOC_FAIL;
  3074. goto out;
  3075. }
  3076. if (strcmp(kdfname, "bcrypt") == 0) {
  3077. arc4random_buf(salt, SALT_LEN);
  3078. if (bcrypt_pbkdf(passphrase, strlen(passphrase),
  3079. salt, SALT_LEN, key, keylen + ivlen, rounds) < 0) {
  3080. r = SSH_ERR_INVALID_ARGUMENT;
  3081. goto out;
  3082. }
  3083. if ((r = sshbuf_put_string(kdf, salt, SALT_LEN)) != 0 ||
  3084. (r = sshbuf_put_u32(kdf, rounds)) != 0)
  3085. goto out;
  3086. } else if (strcmp(kdfname, "none") != 0) {
  3087. /* Unsupported KDF type */
  3088. r = SSH_ERR_KEY_UNKNOWN_CIPHER;
  3089. goto out;
  3090. }
  3091. if ((r = cipher_init(&ciphercontext, cipher, key, keylen,
  3092. key + keylen, ivlen, 1)) != 0)
  3093. goto out;
  3094.  
  3095. if ((r = sshbuf_put(encoded, AUTH_MAGIC, sizeof(AUTH_MAGIC))) != 0 ||
  3096. (r = sshbuf_put_cstring(encoded, ciphername)) != 0 ||
  3097. (r = sshbuf_put_cstring(encoded, kdfname)) != 0 ||
  3098. (r = sshbuf_put_stringb(encoded, kdf)) != 0 ||
  3099. (r = sshbuf_put_u32(encoded, 1)) != 0 || /* number of keys */
  3100. (r = sshkey_to_blob(prv, &pubkeyblob, &pubkeylen)) != 0 ||
  3101. (r = sshbuf_put_string(encoded, pubkeyblob, pubkeylen)) != 0)
  3102. goto out;
  3103.  
  3104. /* set up the buffer that will be encrypted */
  3105.  
  3106. /* Random check bytes */
  3107. check = arc4random();
  3108. if ((r = sshbuf_put_u32(encrypted, check)) != 0 ||
  3109. (r = sshbuf_put_u32(encrypted, check)) != 0)
  3110. goto out;
  3111.  
  3112. /* append private key and comment*/
  3113. if ((r = sshkey_private_serialize(prv, encrypted)) != 0 ||
  3114. (r = sshbuf_put_cstring(encrypted, comment)) != 0)
  3115. goto out;
  3116.  
  3117. /* padding */
  3118. i = 0;
  3119. while (sshbuf_len(encrypted) % blocksize) {
  3120. if ((r = sshbuf_put_u8(encrypted, ++i & 0xff)) != 0)
  3121. goto out;
  3122. }
  3123.  
  3124. /* length in destination buffer */
  3125. if ((r = sshbuf_put_u32(encoded, sshbuf_len(encrypted))) != 0)
  3126. goto out;
  3127.  
  3128. /* encrypt */
  3129. if ((r = sshbuf_reserve(encoded,
  3130. sshbuf_len(encrypted) + authlen, &cp)) != 0)
  3131. goto out;
  3132. if ((r = cipher_crypt(ciphercontext, 0, cp,
  3133. sshbuf_ptr(encrypted), sshbuf_len(encrypted), 0, authlen)) != 0)
  3134. goto out;
  3135.  
  3136. /* uuencode */
  3137. if ((b64 = sshbuf_dtob64(encoded)) == NULL) {
  3138. r = SSH_ERR_ALLOC_FAIL;
  3139. goto out;
  3140. }
  3141.  
  3142. sshbuf_reset(blob);
  3143. if ((r = sshbuf_put(blob, MARK_BEGIN, MARK_BEGIN_LEN)) != 0)
  3144. goto out;
  3145. for (i = 0; i < strlen(b64); i++) {
  3146. if ((r = sshbuf_put_u8(blob, b64[i])) != 0)
  3147. goto out;
  3148. /* insert line breaks */
  3149. if (i % 70 == 69 && (r = sshbuf_put_u8(blob, '\n')) != 0)
  3150. goto out;
  3151. }
  3152. if (i % 70 != 69 && (r = sshbuf_put_u8(blob, '\n')) != 0)
  3153. goto out;
  3154. if ((r = sshbuf_put(blob, MARK_END, MARK_END_LEN)) != 0)
  3155. goto out;
  3156.  
  3157. /* success */
  3158. r = 0;
  3159.  
  3160. out:
  3161. sshbuf_free(kdf);
  3162. sshbuf_free(encoded);
  3163. sshbuf_free(encrypted);
  3164. cipher_free(ciphercontext);
  3165. explicit_bzero(salt, sizeof(salt));
  3166. if (key != NULL) {
  3167. explicit_bzero(key, keylen + ivlen);
  3168. free(key);
  3169. }
  3170. if (pubkeyblob != NULL) {
  3171. explicit_bzero(pubkeyblob, pubkeylen);
  3172. free(pubkeyblob);
  3173. }
  3174. if (b64 != NULL) {
  3175. explicit_bzero(b64, strlen(b64));
  3176. free(b64);
  3177. }
  3178. return r;
  3179. }
  3180.  
  3181. static int
  3182. sshkey_parse_private2(struct sshbuf *blob, int type, const char *passphrase,
  3183. struct sshkey **keyp, char **commentp)
  3184. {
  3185. char *comment = NULL, *ciphername = NULL, *kdfname = NULL;
  3186. const struct sshcipher *cipher = NULL;
  3187. const u_char *cp;
  3188. int r = SSH_ERR_INTERNAL_ERROR;
  3189. size_t encoded_len;
  3190. size_t i, keylen = 0, ivlen = 0, authlen = 0, slen = 0;
  3191. struct sshbuf *encoded = NULL, *decoded = NULL;
  3192. struct sshbuf *kdf = NULL, *decrypted = NULL;
  3193. struct sshcipher_ctx *ciphercontext = NULL;
  3194. struct sshkey *k = NULL;
  3195. u_char *key = NULL, *salt = NULL, *dp, pad, last;
  3196. u_int blocksize, rounds, nkeys, encrypted_len, check1, check2;
  3197.  
  3198. if (keyp != NULL)
  3199. *keyp = NULL;
  3200. if (commentp != NULL)
  3201. *commentp = NULL;
  3202.  
  3203. if ((encoded = sshbuf_new()) == NULL ||
  3204. (decoded = sshbuf_new()) == NULL ||
  3205. (decrypted = sshbuf_new()) == NULL) {
  3206. r = SSH_ERR_ALLOC_FAIL;
  3207. goto out;
  3208. }
  3209.  
  3210. /* check preamble */
  3211. cp = sshbuf_ptr(blob);
  3212. encoded_len = sshbuf_len(blob);
  3213. if (encoded_len < (MARK_BEGIN_LEN + MARK_END_LEN) ||
  3214. memcmp(cp, MARK_BEGIN, MARK_BEGIN_LEN) != 0) {
  3215. r = SSH_ERR_INVALID_FORMAT;
  3216. goto out;
  3217. }
  3218. cp += MARK_BEGIN_LEN;
  3219. encoded_len -= MARK_BEGIN_LEN;
  3220.  
  3221. /* Look for end marker, removing whitespace as we go */
  3222. while (encoded_len > 0) {
  3223. if (*cp != '\n' && *cp != '\r') {
  3224. if ((r = sshbuf_put_u8(encoded, *cp)) != 0)
  3225. goto out;
  3226. }
  3227. last = *cp;
  3228. encoded_len--;
  3229. cp++;
  3230. if (last == '\n') {
  3231. if (encoded_len >= MARK_END_LEN &&
  3232. memcmp(cp, MARK_END, MARK_END_LEN) == 0) {
  3233. /* \0 terminate */
  3234. if ((r = sshbuf_put_u8(encoded, 0)) != 0)
  3235. goto out;
  3236. break;
  3237. }
  3238. }
  3239. }
  3240. if (encoded_len == 0) {
  3241. r = SSH_ERR_INVALID_FORMAT;
  3242. goto out;
  3243. }
  3244.  
  3245. /* decode base64 */
  3246. if ((r = sshbuf_b64tod(decoded, (char *)sshbuf_ptr(encoded))) != 0)
  3247. goto out;
  3248.  
  3249. /* check magic */
  3250. if (sshbuf_len(decoded) < sizeof(AUTH_MAGIC) ||
  3251. memcmp(sshbuf_ptr(decoded), AUTH_MAGIC, sizeof(AUTH_MAGIC))) {
  3252. r = SSH_ERR_INVALID_FORMAT;
  3253. goto out;
  3254. }
  3255. /* parse public portion of key */
  3256. if ((r = sshbuf_consume(decoded, sizeof(AUTH_MAGIC))) != 0 ||
  3257. (r = sshbuf_get_cstring(decoded, &ciphername, NULL)) != 0 ||
  3258. (r = sshbuf_get_cstring(decoded, &kdfname, NULL)) != 0 ||
  3259. (r = sshbuf_froms(decoded, &kdf)) != 0 ||
  3260. (r = sshbuf_get_u32(decoded, &nkeys)) != 0 ||
  3261. (r = sshbuf_skip_string(decoded)) != 0 || /* pubkey */
  3262. (r = sshbuf_get_u32(decoded, &encrypted_len)) != 0)
  3263. goto out;
  3264.  
  3265. if ((cipher = cipher_by_name(ciphername)) == NULL) {
  3266. r = SSH_ERR_KEY_UNKNOWN_CIPHER;
  3267. goto out;
  3268. }
  3269. if ((passphrase == NULL || strlen(passphrase) == 0) &&
  3270. strcmp(ciphername, "none") != 0) {
  3271. /* passphrase required */
  3272. r = SSH_ERR_KEY_WRONG_PASSPHRASE;
  3273. goto out;
  3274. }
  3275. if (strcmp(kdfname, "none") != 0 && strcmp(kdfname, "bcrypt") != 0) {
  3276. r = SSH_ERR_KEY_UNKNOWN_CIPHER;
  3277. goto out;
  3278. }
  3279. if (!strcmp(kdfname, "none") && strcmp(ciphername, "none") != 0) {
  3280. r = SSH_ERR_INVALID_FORMAT;
  3281. goto out;
  3282. }
  3283. if (nkeys != 1) {
  3284. /* XXX only one key supported */
  3285. r = SSH_ERR_INVALID_FORMAT;
  3286. goto out;
  3287. }
  3288.  
  3289. /* check size of encrypted key blob */
  3290. blocksize = cipher_blocksize(cipher);
  3291. if (encrypted_len < blocksize || (encrypted_len % blocksize) != 0) {
  3292. r = SSH_ERR_INVALID_FORMAT;
  3293. goto out;
  3294. }
  3295.  
  3296. /* setup key */
  3297. keylen = cipher_keylen(cipher);
  3298. ivlen = cipher_ivlen(cipher);
  3299. authlen = cipher_authlen(cipher);
  3300. if ((key = calloc(1, keylen + ivlen)) == NULL) {
  3301. r = SSH_ERR_ALLOC_FAIL;
  3302. goto out;
  3303. }
  3304. if (strcmp(kdfname, "bcrypt") == 0) {
  3305. if ((r = sshbuf_get_string(kdf, &salt, &slen)) != 0 ||
  3306. (r = sshbuf_get_u32(kdf, &rounds)) != 0)
  3307. goto out;
  3308. if (bcrypt_pbkdf(passphrase, strlen(passphrase), salt, slen,
  3309. key, keylen + ivlen, rounds) < 0) {
  3310. r = SSH_ERR_INVALID_FORMAT;
  3311. goto out;
  3312. }
  3313. }
  3314.  
  3315. /* check that an appropriate amount of auth data is present */
  3316. if (sshbuf_len(decoded) < encrypted_len + authlen) {
  3317. r = SSH_ERR_INVALID_FORMAT;
  3318. goto out;
  3319. }
  3320.  
  3321. /* decrypt private portion of key */
  3322. if ((r = sshbuf_reserve(decrypted, encrypted_len, &dp)) != 0 ||
  3323. (r = cipher_init(&ciphercontext, cipher, key, keylen,
  3324. key + keylen, ivlen, 0)) != 0)
  3325. goto out;
  3326. if ((r = cipher_crypt(ciphercontext, 0, dp, sshbuf_ptr(decoded),
  3327. encrypted_len, 0, authlen)) != 0) {
  3328. /* an integrity error here indicates an incorrect passphrase */
  3329. if (r == SSH_ERR_MAC_INVALID)
  3330. r = SSH_ERR_KEY_WRONG_PASSPHRASE;
  3331. goto out;
  3332. }
  3333. if ((r = sshbuf_consume(decoded, encrypted_len + authlen)) != 0)
  3334. goto out;
  3335. /* there should be no trailing data */
  3336. if (sshbuf_len(decoded) != 0) {
  3337. r = SSH_ERR_INVALID_FORMAT;
  3338. goto out;
  3339. }
  3340.  
  3341. /* check check bytes */
  3342. if ((r = sshbuf_get_u32(decrypted, &check1)) != 0 ||
  3343. (r = sshbuf_get_u32(decrypted, &check2)) != 0)
  3344. goto out;
  3345. if (check1 != check2) {
  3346. r = SSH_ERR_KEY_WRONG_PASSPHRASE;
  3347. goto out;
  3348. }
  3349.  
  3350. /* Load the private key and comment */
  3351. if ((r = sshkey_private_deserialize(decrypted, &k)) != 0 ||
  3352. (r = sshbuf_get_cstring(decrypted, &comment, NULL)) != 0)
  3353. goto out;
  3354.  
  3355. /* Check deterministic padding */
  3356. i = 0;
  3357. while (sshbuf_len(decrypted)) {
  3358. if ((r = sshbuf_get_u8(decrypted, &pad)) != 0)
  3359. goto out;
  3360. if (pad != (++i & 0xff)) {
  3361. r = SSH_ERR_INVALID_FORMAT;
  3362. goto out;
  3363. }
  3364. }
  3365.  
  3366. /* XXX decode pubkey and check against private */
  3367.  
  3368. /* success */
  3369. r = 0;
  3370. if (keyp != NULL) {
  3371. *keyp = k;
  3372. k = NULL;
  3373. }
  3374. if (commentp != NULL) {
  3375. *commentp = comment;
  3376. comment = NULL;
  3377. }
  3378. out:
  3379. pad = 0;
  3380. cipher_free(ciphercontext);
  3381. free(ciphername);
  3382. free(kdfname);
  3383. free(comment);
  3384. if (salt != NULL) {
  3385. explicit_bzero(salt, slen);
  3386. free(salt);
  3387. }
  3388. if (key != NULL) {
  3389. explicit_bzero(key, keylen + ivlen);
  3390. free(key);
  3391. }
  3392. sshbuf_free(encoded);
  3393. sshbuf_free(decoded);
  3394. sshbuf_free(kdf);
  3395. sshbuf_free(decrypted);
  3396. sshkey_free(k);
  3397. return r;
  3398. }
  3399.  
  3400. #if WITH_SSH1
  3401. /*
  3402. * Serialises the authentication (private) key to a blob, encrypting it with
  3403. * passphrase. The identification of the blob (lowest 64 bits of n) will
  3404. * precede the key to provide identification of the key without needing a
  3405. * passphrase.
  3406. */
  3407. static int
  3408. sshkey_private_rsa1_to_blob(struct sshkey *key, struct sshbuf *blob,
  3409. const char *passphrase, const char *comment)
  3410. {
  3411. struct sshbuf *buffer = NULL, *encrypted = NULL;
  3412. u_char buf[8];
  3413. int r, cipher_num;
  3414. struct sshcipher_ctx *ciphercontext = NULL;
  3415. const struct sshcipher *cipher;
  3416. u_char *cp;
  3417.  
  3418. /*
  3419. * If the passphrase is empty, use SSH_CIPHER_NONE to ease converting
  3420. * to another cipher; otherwise use SSH_AUTHFILE_CIPHER.
  3421. */
  3422. cipher_num = (strcmp(passphrase, "") == 0) ?
  3423. SSH_CIPHER_NONE : SSH_CIPHER_3DES;
  3424. if ((cipher = cipher_by_number(cipher_num)) == NULL)
  3425. return SSH_ERR_INTERNAL_ERROR;
  3426.  
  3427. /* This buffer is used to build the secret part of the private key. */
  3428. if ((buffer = sshbuf_new()) == NULL)
  3429. return SSH_ERR_ALLOC_FAIL;
  3430.  
  3431. /* Put checkbytes for checking passphrase validity. */
  3432. if ((r = sshbuf_reserve(buffer, 4, &cp)) != 0)
  3433. goto out;
  3434. arc4random_buf(cp, 2);
  3435. memcpy(cp + 2, cp, 2);
  3436.  
  3437. /*
  3438. * Store the private key (n and e will not be stored because they
  3439. * will be stored in plain text, and storing them also in encrypted
  3440. * format would just give known plaintext).
  3441. * Note: q and p are stored in reverse order to SSL.
  3442. */
  3443. if ((r = sshbuf_put_bignum1(buffer, key->rsa->d)) != 0 ||
  3444. (r = sshbuf_put_bignum1(buffer, key->rsa->iqmp)) != 0 ||
  3445. (r = sshbuf_put_bignum1(buffer, key->rsa->q)) != 0 ||
  3446. (r = sshbuf_put_bignum1(buffer, key->rsa->p)) != 0)
  3447. goto out;
  3448.  
  3449. /* Pad the part to be encrypted to a size that is a multiple of 8. */
  3450. explicit_bzero(buf, 8);
  3451. if ((r = sshbuf_put(buffer, buf, 8 - (sshbuf_len(buffer) % 8))) != 0)
  3452. goto out;
  3453.  
  3454. /* This buffer will be used to contain the data in the file. */
  3455. if ((encrypted = sshbuf_new()) == NULL) {
  3456. r = SSH_ERR_ALLOC_FAIL;
  3457. goto out;
  3458. }
  3459.  
  3460. /* First store keyfile id string. */
  3461. if ((r = sshbuf_put(encrypted, LEGACY_BEGIN,
  3462. sizeof(LEGACY_BEGIN))) != 0)
  3463. goto out;
  3464.  
  3465. /* Store cipher type and "reserved" field. */
  3466. if ((r = sshbuf_put_u8(encrypted, cipher_num)) != 0 ||
  3467. (r = sshbuf_put_u32(encrypted, 0)) != 0)
  3468. goto out;
  3469.  
  3470. /* Store public key. This will be in plain text. */
  3471. if ((r = sshbuf_put_u32(encrypted, BN_num_bits(key->rsa->n))) != 0 ||
  3472. (r = sshbuf_put_bignum1(encrypted, key->rsa->n)) != 0 ||
  3473. (r = sshbuf_put_bignum1(encrypted, key->rsa->e)) != 0 ||
  3474. (r = sshbuf_put_cstring(encrypted, comment)) != 0)
  3475. goto out;
  3476.  
  3477. /* Allocate space for the private part of the key in the buffer. */
  3478. if ((r = sshbuf_reserve(encrypted, sshbuf_len(buffer), &cp)) != 0)
  3479. goto out;
  3480.  
  3481. if ((r = cipher_set_key_string(&ciphercontext, cipher, passphrase,
  3482. CIPHER_ENCRYPT)) != 0)
  3483. goto out;
  3484. if ((r = cipher_crypt(ciphercontext, 0, cp,
  3485. sshbuf_ptr(buffer), sshbuf_len(buffer), 0, 0)) != 0)
  3486. goto out;
  3487.  
  3488. r = sshbuf_putb(blob, encrypted);
  3489.  
  3490. out:
  3491. cipher_free(ciphercontext);
  3492. explicit_bzero(buf, sizeof(buf));
  3493. sshbuf_free(buffer);
  3494. sshbuf_free(encrypted);
  3495.  
  3496. return r;
  3497. }
  3498. #endif /* WITH_SSH1 */
  3499.  
  3500. #ifdef WITH_OPENSSL
  3501. /* convert SSH v2 key in OpenSSL PEM format */
  3502. static int
  3503. sshkey_private_pem_to_blob(struct sshkey *key, struct sshbuf *blob,
  3504. const char *_passphrase, const char *comment)
  3505. {
  3506. int success, r;
  3507. int blen, len = strlen(_passphrase);
  3508. u_char *passphrase = (len > 0) ? (u_char *)_passphrase : NULL;
  3509. #if (OPENSSL_VERSION_NUMBER < 0x00907000L)
  3510. const EVP_CIPHER *cipher = (len > 0) ? EVP_des_ede3_cbc() : NULL;
  3511. #else
  3512. const EVP_CIPHER *cipher = (len > 0) ? EVP_aes_128_cbc() : NULL;
  3513. #endif
  3514. const u_char *bptr;
  3515. BIO *bio = NULL;
  3516.  
  3517. if (len > 0 && len <= 4)
  3518. return SSH_ERR_PASSPHRASE_TOO_SHORT;
  3519. if ((bio = BIO_new(BIO_s_mem())) == NULL)
  3520. return SSH_ERR_ALLOC_FAIL;
  3521.  
  3522. switch (key->type) {
  3523. case KEY_DSA:
  3524. success = PEM_write_bio_DSAPrivateKey(bio, key->dsa,
  3525. cipher, passphrase, len, NULL, NULL);
  3526. break;
  3527. #ifdef OPENSSL_HAS_ECC
  3528. case KEY_ECDSA:
  3529. success = PEM_write_bio_ECPrivateKey(bio, key->ecdsa,
  3530. cipher, passphrase, len, NULL, NULL);
  3531. break;
  3532. #endif
  3533. case KEY_RSA:
  3534. success = PEM_write_bio_RSAPrivateKey(bio, key->rsa,
  3535. cipher, passphrase, len, NULL, NULL);
  3536. break;
  3537. default:
  3538. success = 0;
  3539. break;
  3540. }
  3541. if (success == 0) {
  3542. r = SSH_ERR_LIBCRYPTO_ERROR;
  3543. goto out;
  3544. }
  3545. if ((blen = BIO_get_mem_data(bio, &bptr)) <= 0) {
  3546. r = SSH_ERR_INTERNAL_ERROR;
  3547. goto out;
  3548. }
  3549. if ((r = sshbuf_put(blob, bptr, blen)) != 0)
  3550. goto out;
  3551. r = 0;
  3552. out:
  3553. BIO_free(bio);
  3554. return r;
  3555. }
  3556. #endif /* WITH_OPENSSL */
  3557.  
  3558. /* Serialise "key" to buffer "blob" */
  3559. int
  3560. sshkey_private_to_fileblob(struct sshkey *key, struct sshbuf *blob,
  3561. const char *passphrase, const char *comment,
  3562. int force_new_format, const char *new_format_cipher, int new_format_rounds)
  3563. {
  3564. switch (key->type) {
  3565. #ifdef WITH_SSH1
  3566. case KEY_RSA1:
  3567. return sshkey_private_rsa1_to_blob(key, blob,
  3568. passphrase, comment);
  3569. #endif /* WITH_SSH1 */
  3570. #ifdef WITH_OPENSSL
  3571. case KEY_DSA:
  3572. case KEY_ECDSA:
  3573. case KEY_RSA:
  3574. if (force_new_format) {
  3575. return sshkey_private_to_blob2(key, blob, passphrase,
  3576. comment, new_format_cipher, new_format_rounds);
  3577. }
  3578. return sshkey_private_pem_to_blob(key, blob,
  3579. passphrase, comment);
  3580. #endif /* WITH_OPENSSL */
  3581. case KEY_ED25519:
  3582. return sshkey_private_to_blob2(key, blob, passphrase,
  3583. comment, new_format_cipher, new_format_rounds);
  3584. default:
  3585. return SSH_ERR_KEY_TYPE_UNKNOWN;
  3586. }
  3587. }
  3588.  
  3589. #ifdef WITH_SSH1
  3590. /*
  3591. * Parse the public, unencrypted portion of a RSA1 key.
  3592. */
  3593. int
  3594. sshkey_parse_public_rsa1_fileblob(struct sshbuf *blob,
  3595. struct sshkey **keyp, char **commentp)
  3596. {
  3597. int r;
  3598. struct sshkey *pub = NULL;
  3599. struct sshbuf *copy = NULL;
  3600.  
  3601. if (keyp != NULL)
  3602. *keyp = NULL;
  3603. if (commentp != NULL)
  3604. *commentp = NULL;
  3605.  
  3606. /* Check that it is at least big enough to contain the ID string. */
  3607. if (sshbuf_len(blob) < sizeof(LEGACY_BEGIN))
  3608. return SSH_ERR_INVALID_FORMAT;
  3609.  
  3610. /*
  3611. * Make sure it begins with the id string. Consume the id string
  3612. * from the buffer.
  3613. */
  3614. if (memcmp(sshbuf_ptr(blob), LEGACY_BEGIN, sizeof(LEGACY_BEGIN)) != 0)
  3615. return SSH_ERR_INVALID_FORMAT;
  3616. /* Make a working copy of the keyblob and skip past the magic */
  3617. if ((copy = sshbuf_fromb(blob)) == NULL)
  3618. return SSH_ERR_ALLOC_FAIL;
  3619. if ((r = sshbuf_consume(copy, sizeof(LEGACY_BEGIN))) != 0)
  3620. goto out;
  3621.  
  3622. /* Skip cipher type, reserved data and key bits. */
  3623. if ((r = sshbuf_get_u8(copy, NULL)) != 0 || /* cipher type */
  3624. (r = sshbuf_get_u32(copy, NULL)) != 0 || /* reserved */
  3625. (r = sshbuf_get_u32(copy, NULL)) != 0) /* key bits */
  3626. goto out;
  3627.  
  3628. /* Read the public key from the buffer. */
  3629. if ((pub = sshkey_new(KEY_RSA1)) == NULL ||
  3630. (r = sshbuf_get_bignum1(copy, pub->rsa->n)) != 0 ||
  3631. (r = sshbuf_get_bignum1(copy, pub->rsa->e)) != 0)
  3632. goto out;
  3633.  
  3634. /* Finally, the comment */
  3635. if ((r = sshbuf_get_string(copy, (u_char**)commentp, NULL)) != 0)
  3636. goto out;
  3637.  
  3638. /* The encrypted private part is not parsed by this function. */
  3639.  
  3640. r = 0;
  3641. if (keyp != NULL) {
  3642. *keyp = pub;
  3643. pub = NULL;
  3644. }
  3645. out:
  3646. sshbuf_free(copy);
  3647. sshkey_free(pub);
  3648. return r;
  3649. }
  3650.  
  3651. static int
  3652. sshkey_parse_private_rsa1(struct sshbuf *blob, const char *passphrase,
  3653. struct sshkey **keyp, char **commentp)
  3654. {
  3655. int r;
  3656. u_int16_t check1, check2;
  3657. u_int8_t cipher_type;
  3658. struct sshbuf *decrypted = NULL, *copy = NULL;
  3659. u_char *cp;
  3660. char *comment = NULL;
  3661. struct sshcipher_ctx *ciphercontext = NULL;
  3662. const struct sshcipher *cipher;
  3663. struct sshkey *prv = NULL;
  3664.  
  3665. if (keyp != NULL)
  3666. *keyp = NULL;
  3667. if (commentp != NULL)
  3668. *commentp = NULL;
  3669.  
  3670. /* Check that it is at least big enough to contain the ID string. */
  3671. if (sshbuf_len(blob) < sizeof(LEGACY_BEGIN))
  3672. return SSH_ERR_INVALID_FORMAT;
  3673.  
  3674. /*
  3675. * Make sure it begins with the id string. Consume the id string
  3676. * from the buffer.
  3677. */
  3678. if (memcmp(sshbuf_ptr(blob), LEGACY_BEGIN, sizeof(LEGACY_BEGIN)) != 0)
  3679. return SSH_ERR_INVALID_FORMAT;
  3680.  
  3681. if ((prv = sshkey_new_private(KEY_RSA1)) == NULL) {
  3682. r = SSH_ERR_ALLOC_FAIL;
  3683. goto out;
  3684. }
  3685. if ((copy = sshbuf_fromb(blob)) == NULL ||
  3686. (decrypted = sshbuf_new()) == NULL) {
  3687. r = SSH_ERR_ALLOC_FAIL;
  3688. goto out;
  3689. }
  3690. if ((r = sshbuf_consume(copy, sizeof(LEGACY_BEGIN))) != 0)
  3691. goto out;
  3692.  
  3693. /* Read cipher type. */
  3694. if ((r = sshbuf_get_u8(copy, &cipher_type)) != 0 ||
  3695. (r = sshbuf_get_u32(copy, NULL)) != 0) /* reserved */
  3696. goto out;
  3697.  
  3698. /* Read the public key and comment from the buffer. */
  3699. if ((r = sshbuf_get_u32(copy, NULL)) != 0 || /* key bits */
  3700. (r = sshbuf_get_bignum1(copy, prv->rsa->n)) != 0 ||
  3701. (r = sshbuf_get_bignum1(copy, prv->rsa->e)) != 0 ||
  3702. (r = sshbuf_get_cstring(copy, &comment, NULL)) != 0)
  3703. goto out;
  3704.  
  3705. /* Check that it is a supported cipher. */
  3706. cipher = cipher_by_number(cipher_type);
  3707. if (cipher == NULL) {
  3708. r = SSH_ERR_KEY_UNKNOWN_CIPHER;
  3709. goto out;
  3710. }
  3711. /* Initialize space for decrypted data. */
  3712. if ((r = sshbuf_reserve(decrypted, sshbuf_len(copy), &cp)) != 0)
  3713. goto out;
  3714.  
  3715. /* Rest of the buffer is encrypted. Decrypt it using the passphrase. */
  3716. if ((r = cipher_set_key_string(&ciphercontext, cipher, passphrase,
  3717. CIPHER_DECRYPT)) != 0)
  3718. goto out;
  3719. if ((r = cipher_crypt(ciphercontext, 0, cp,
  3720. sshbuf_ptr(copy), sshbuf_len(copy), 0, 0)) != 0)
  3721. goto out;
  3722.  
  3723. if ((r = sshbuf_get_u16(decrypted, &check1)) != 0 ||
  3724. (r = sshbuf_get_u16(decrypted, &check2)) != 0)
  3725. goto out;
  3726. if (check1 != check2) {
  3727. r = SSH_ERR_KEY_WRONG_PASSPHRASE;
  3728. goto out;
  3729. }
  3730.  
  3731. /* Read the rest of the private key. */
  3732. if ((r = sshbuf_get_bignum1(decrypted, prv->rsa->d)) != 0 ||
  3733. (r = sshbuf_get_bignum1(decrypted, prv->rsa->iqmp)) != 0 ||
  3734. (r = sshbuf_get_bignum1(decrypted, prv->rsa->q)) != 0 ||
  3735. (r = sshbuf_get_bignum1(decrypted, prv->rsa->p)) != 0)
  3736. goto out;
  3737.  
  3738. /* calculate p-1 and q-1 */
  3739. if ((r = rsa_generate_additional_parameters(prv->rsa)) != 0)
  3740. goto out;
  3741.  
  3742. /* enable blinding */
  3743. if (RSA_blinding_on(prv->rsa, NULL) != 1) {
  3744. r = SSH_ERR_LIBCRYPTO_ERROR;
  3745. goto out;
  3746. }
  3747. r = 0;
  3748. if (keyp != NULL) {
  3749. *keyp = prv;
  3750. prv = NULL;
  3751. }
  3752. if (commentp != NULL) {
  3753. *commentp = comment;
  3754. comment = NULL;
  3755. }
  3756. out:
  3757. cipher_free(ciphercontext);
  3758. free(comment);
  3759. sshkey_free(prv);
  3760. sshbuf_free(copy);
  3761. sshbuf_free(decrypted);
  3762. return r;
  3763. }
  3764. #endif /* WITH_SSH1 */
  3765.  
  3766. #ifdef WITH_OPENSSL
  3767. static int
  3768. sshkey_parse_private_pem_fileblob(struct sshbuf *blob, int type,
  3769. const char *passphrase, struct sshkey **keyp)
  3770. {
  3771. EVP_PKEY *pk = NULL;
  3772. struct sshkey *prv = NULL;
  3773. BIO *bio = NULL;
  3774. int r;
  3775.  
  3776. if (keyp != NULL)
  3777. *keyp = NULL;
  3778.  
  3779. if ((bio = BIO_new(BIO_s_mem())) == NULL || sshbuf_len(blob) > INT_MAX)
  3780. return SSH_ERR_ALLOC_FAIL;
  3781. if (BIO_write(bio, sshbuf_ptr(blob), sshbuf_len(blob)) !=
  3782. (int)sshbuf_len(blob)) {
  3783. r = SSH_ERR_ALLOC_FAIL;
  3784. goto out;
  3785. }
  3786.  
  3787. if ((pk = PEM_read_bio_PrivateKey(bio, NULL, NULL,
  3788. (char *)passphrase)) == NULL) {
  3789. r = SSH_ERR_KEY_WRONG_PASSPHRASE;
  3790. goto out;
  3791. }
  3792. if (pk->type == EVP_PKEY_RSA &&
  3793. (type == KEY_UNSPEC || type == KEY_RSA)) {
  3794. if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) {
  3795. r = SSH_ERR_ALLOC_FAIL;
  3796. goto out;
  3797. }
  3798. prv->rsa = EVP_PKEY_get1_RSA(pk);
  3799. prv->type = KEY_RSA;
  3800. #ifdef DEBUG_PK
  3801. RSA_print_fp(stderr, prv->rsa, 8);
  3802. #endif
  3803. if (RSA_blinding_on(prv->rsa, NULL) != 1) {
  3804. r = SSH_ERR_LIBCRYPTO_ERROR;
  3805. goto out;
  3806. }
  3807. } else if (pk->type == EVP_PKEY_DSA &&
  3808. (type == KEY_UNSPEC || type == KEY_DSA)) {
  3809. if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) {
  3810. r = SSH_ERR_ALLOC_FAIL;
  3811. goto out;
  3812. }
  3813. prv->dsa = EVP_PKEY_get1_DSA(pk);
  3814. prv->type = KEY_DSA;
  3815. #ifdef DEBUG_PK
  3816. DSA_print_fp(stderr, prv->dsa, 8);
  3817. #endif
  3818. #ifdef OPENSSL_HAS_ECC
  3819. } else if (pk->type == EVP_PKEY_EC &&
  3820. (type == KEY_UNSPEC || type == KEY_ECDSA)) {
  3821. if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) {
  3822. r = SSH_ERR_ALLOC_FAIL;
  3823. goto out;
  3824. }
  3825. prv->ecdsa = EVP_PKEY_get1_EC_KEY(pk);
  3826. prv->type = KEY_ECDSA;
  3827. prv->ecdsa_nid = sshkey_ecdsa_key_to_nid(prv->ecdsa);
  3828. if (prv->ecdsa_nid == -1 ||
  3829. sshkey_curve_nid_to_name(prv->ecdsa_nid) == NULL ||
  3830. sshkey_ec_validate_public(EC_KEY_get0_group(prv->ecdsa),
  3831. EC_KEY_get0_public_key(prv->ecdsa)) != 0 ||
  3832. sshkey_ec_validate_private(prv->ecdsa) != 0) {
  3833. r = SSH_ERR_INVALID_FORMAT;
  3834. goto out;
  3835. }
  3836. # ifdef DEBUG_PK
  3837. if (prv != NULL && prv->ecdsa != NULL)
  3838. sshkey_dump_ec_key(prv->ecdsa);
  3839. # endif
  3840. #endif /* OPENSSL_HAS_ECC */
  3841. } else {
  3842. r = SSH_ERR_INVALID_FORMAT;
  3843. goto out;
  3844. }
  3845. r = 0;
  3846. if (keyp != NULL) {
  3847. *keyp = prv;
  3848. prv = NULL;
  3849. }
  3850. out:
  3851. BIO_free(bio);
  3852. if (pk != NULL)
  3853. EVP_PKEY_free(pk);
  3854. sshkey_free(prv);
  3855. return r;
  3856. }
  3857. #endif /* WITH_OPENSSL */
  3858.  
  3859. int
  3860. sshkey_parse_private_fileblob_type(struct sshbuf *blob, int type,
  3861. const char *passphrase, struct sshkey **keyp, char **commentp)
  3862. {
  3863. if (keyp != NULL)
  3864. *keyp = NULL;
  3865. if (commentp != NULL)
  3866. *commentp = NULL;
  3867.  
  3868. switch (type) {
  3869. #ifdef WITH_SSH1
  3870. case KEY_RSA1:
  3871. return sshkey_parse_private_rsa1(blob, passphrase,
  3872. keyp, commentp);
  3873. #endif /* WITH_SSH1 */
  3874. #ifdef WITH_OPENSSL
  3875. case KEY_DSA:
  3876. case KEY_ECDSA:
  3877. case KEY_RSA:
  3878. return sshkey_parse_private_pem_fileblob(blob, type,
  3879. passphrase, keyp);
  3880. #endif /* WITH_OPENSSL */
  3881. case KEY_ED25519:
  3882. return sshkey_parse_private2(blob, type, passphrase,
  3883. keyp, commentp);
  3884. case KEY_UNSPEC:
  3885. if (sshkey_parse_private2(blob, type, passphrase, keyp,
  3886. commentp) == 0)
  3887. return 0;
  3888. #ifdef WITH_OPENSSL
  3889. return sshkey_parse_private_pem_fileblob(blob, type,
  3890. passphrase, keyp);
  3891. #else
  3892. return SSH_ERR_INVALID_FORMAT;
  3893. #endif /* WITH_OPENSSL */
  3894. default:
  3895. return SSH_ERR_KEY_TYPE_UNKNOWN;
  3896. }
  3897. }
  3898.  
  3899. int
  3900. sshkey_parse_private_fileblob(struct sshbuf *buffer, const char *passphrase,
  3901. struct sshkey **keyp, char **commentp)
  3902. {
  3903. if (keyp != NULL)
  3904. *keyp = NULL;
  3905. if (commentp != NULL)
  3906. *commentp = NULL;
  3907.  
  3908. #ifdef WITH_SSH1
  3909. /* it's a SSH v1 key if the public key part is readable */
  3910. if (sshkey_parse_public_rsa1_fileblob(buffer, NULL, NULL) == 0) {
  3911. return sshkey_parse_private_fileblob_type(buffer, KEY_RSA1,
  3912. passphrase, keyp, commentp);
  3913. }
  3914. #endif /* WITH_SSH1 */
  3915. return sshkey_parse_private_fileblob_type(buffer, KEY_UNSPEC,
  3916. passphrase, keyp, commentp);
  3917. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement