Advertisement
Guest User

Untitled

a guest
Dec 14th, 2022
79
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.44 KB | Source Code | 0 0
  1. #Create Dataset
  2. path = "/content/drive/MyDrive/Colab Notebooks/LIDAR/SPAD_NYU/SPAD_Counts"
  3. path_short = "/content/drive/MyDrive/Colab Notebooks/LIDAR/SPAD_NYU/SPAD_Counts_Short"
  4.  
  5. class SPADSet(Dataset):
  6. def __init__(self,path,transform=None,is_train=False):
  7. super(SPADSet, self).__init__()
  8. self.path = path
  9. self.fileList = list()
  10. for file in os.listdir(path):
  11. self.fileList.append(path+"/"+file)
  12. self.transform = transform
  13. self.is_train = is_train
  14.  
  15. def __len__(self):
  16. return len(self.fileList)
  17.  
  18. def __getitem__(self, idx):
  19. fileName = self.fileList[idx]
  20. spadpath = fileName
  21.  
  22. #Load MATLAB file, then get return tuple of spad and depth.
  23. mat = scipy.io.loadmat(spadpath)
  24. spad = mat['spad']
  25. spad = spad.astype(int)
  26. spad = torch.tensor(spad)
  27. #spad = torch.unsqueeze(spad,dim=0)
  28. spad = spad.float()
  29. spad = torch.reshape(spad,(128,64,64))
  30. depth = mat['depth']
  31. depth = torch.tensor(depth)
  32. depth = torch.unsqueeze(depth,dim=0)
  33. depth = depth.float()
  34.  
  35. return spad, depth
  36.  
  37. dataset = SPADSet(path)
  38. print(len(dataset))
  39.  
  40. train_data,valid_data = torch.utils.data.random_split(dataset, [350, 24])
  41.  
  42. train_dataloader = DataLoader(train_data, batch_size=4, shuffle=True)
  43. test_dataloader = DataLoader(valid_data, batch_size=4, shuffle=True)
  44.  
  45. #CREATE ITERATOR
  46. train_iterator = iter(train_dataloader)
  47. test_iterator = iter(test_dataloader)
  48.  
  49.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement