Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #Create Dataset
- path = "/content/drive/MyDrive/Colab Notebooks/LIDAR/SPAD_NYU/SPAD_Counts"
- path_short = "/content/drive/MyDrive/Colab Notebooks/LIDAR/SPAD_NYU/SPAD_Counts_Short"
- class SPADSet(Dataset):
- def __init__(self,path,transform=None,is_train=False):
- super(SPADSet, self).__init__()
- self.path = path
- self.fileList = list()
- for file in os.listdir(path):
- self.fileList.append(path+"/"+file)
- self.transform = transform
- self.is_train = is_train
- def __len__(self):
- return len(self.fileList)
- def __getitem__(self, idx):
- fileName = self.fileList[idx]
- spadpath = fileName
- #Load MATLAB file, then get return tuple of spad and depth.
- mat = scipy.io.loadmat(spadpath)
- spad = mat['spad']
- spad = spad.astype(int)
- spad = torch.tensor(spad)
- #spad = torch.unsqueeze(spad,dim=0)
- spad = spad.float()
- spad = torch.reshape(spad,(128,64,64))
- depth = mat['depth']
- depth = torch.tensor(depth)
- depth = torch.unsqueeze(depth,dim=0)
- depth = depth.float()
- return spad, depth
- dataset = SPADSet(path)
- print(len(dataset))
- train_data,valid_data = torch.utils.data.random_split(dataset, [350, 24])
- train_dataloader = DataLoader(train_data, batch_size=4, shuffle=True)
- test_dataloader = DataLoader(valid_data, batch_size=4, shuffle=True)
- #CREATE ITERATOR
- train_iterator = iter(train_dataloader)
- test_iterator = iter(test_dataloader)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement