Guest User

panet-v4

a guest
Jul 9th, 2019
181
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 10.29 KB | None | 0 0
  1. [net]
  2. # Testing
  3. #batch=1
  4. #subdivisions=1
  5. # Training
  6. batch=64
  7. subdivisions=24
  8. width=512
  9. height=512
  10. channels=3
  11. momentum=0.9
  12. decay=0.0005
  13. angle=0
  14. saturation = 0.5
  15. exposure = 1.0
  16. hue=.1
  17.  
  18.  
  19. learning_rate=0.0001
  20. burn_in=1000
  21. max_batches = 100000
  22.  
  23. #policy=steps
  24. #steps=80000,90000
  25. #scales=.1,.1
  26.  
  27. policy=sgdr
  28. sgdr_cycle=1000
  29. sgdr_mult=2
  30. steps=4000,6000,8000,9000
  31. #scales=1, 1, 0.1, 0.1
  32.  
  33. [convolutional]
  34. batch_normalize=1
  35. filters=32
  36. size=3
  37. stride=1
  38. pad=1
  39. activation=leaky
  40.  
  41. # Downsample
  42.  
  43. [convolutional]
  44. batch_normalize=1
  45. filters=64
  46. size=3
  47. stride=2
  48. pad=1
  49. activation=leaky
  50.  
  51. [convolutional]
  52. batch_normalize=1
  53. filters=32
  54. size=1
  55. stride=1
  56. pad=1
  57. activation=leaky
  58.  
  59. [convolutional]
  60. batch_normalize=1
  61. filters=64
  62. size=3
  63. stride=1
  64. pad=1
  65. activation=leaky
  66.  
  67. [shortcut]
  68. from=-3
  69. activation=linear
  70.  
  71. # Downsample
  72.  
  73. [convolutional]
  74. batch_normalize=1
  75. filters=128
  76. size=3
  77. stride=2
  78. pad=1
  79. activation=leaky
  80.  
  81. [convolutional]
  82. batch_normalize=1
  83. filters=64
  84. size=1
  85. stride=1
  86. pad=1
  87. activation=leaky
  88.  
  89. [convolutional]
  90. batch_normalize=1
  91. filters=128
  92. size=3
  93. stride=1
  94. pad=1
  95. activation=leaky
  96.  
  97. [shortcut]
  98. from=-3
  99. activation=linear
  100.  
  101. [convolutional]
  102. batch_normalize=1
  103. filters=64
  104. size=1
  105. stride=1
  106. pad=1
  107. activation=leaky
  108.  
  109. [convolutional]
  110. batch_normalize=1
  111. filters=128
  112. size=3
  113. stride=1
  114. pad=1
  115. activation=leaky
  116.  
  117. [shortcut]
  118. from=-3
  119. activation=linear
  120.  
  121. # Downsample
  122.  
  123. [convolutional]
  124. batch_normalize=1
  125. filters=256
  126. size=3
  127. stride=2
  128. pad=1
  129. activation=leaky
  130.  
  131. [convolutional]
  132. batch_normalize=1
  133. filters=128
  134. size=1
  135. stride=1
  136. pad=1
  137. activation=leaky
  138.  
  139. [convolutional]
  140. batch_normalize=1
  141. filters=256
  142. size=3
  143. stride=1
  144. pad=1
  145. activation=leaky
  146.  
  147. [shortcut]
  148. from=-3
  149. activation=linear
  150.  
  151. [convolutional]
  152. batch_normalize=1
  153. filters=128
  154. size=1
  155. stride=1
  156. pad=1
  157. activation=leaky
  158.  
  159. [convolutional]
  160. batch_normalize=1
  161. filters=256
  162. size=3
  163. stride=1
  164. pad=1
  165. activation=leaky
  166.  
  167. [shortcut]
  168. from=-3
  169. activation=linear
  170.  
  171. [convolutional]
  172. batch_normalize=1
  173. filters=128
  174. size=1
  175. stride=1
  176. pad=1
  177. activation=leaky
  178.  
  179. [convolutional]
  180. batch_normalize=1
  181. filters=256
  182. size=3
  183. stride=1
  184. pad=1
  185. activation=leaky
  186.  
  187. [shortcut]
  188. from=-3
  189. activation=linear
  190.  
  191. [convolutional]
  192. batch_normalize=1
  193. filters=128
  194. size=1
  195. stride=1
  196. pad=1
  197. activation=leaky
  198.  
  199. [convolutional]
  200. batch_normalize=1
  201. filters=256
  202. size=3
  203. stride=1
  204. pad=1
  205. activation=leaky
  206.  
  207. [shortcut]
  208. from=-3
  209. activation=linear
  210.  
  211.  
  212. [convolutional]
  213. batch_normalize=1
  214. filters=128
  215. size=1
  216. stride=1
  217. pad=1
  218. activation=leaky
  219.  
  220. [convolutional]
  221. batch_normalize=1
  222. filters=256
  223. size=3
  224. stride=1
  225. pad=1
  226. activation=leaky
  227.  
  228. [shortcut]
  229. from=-3
  230. activation=linear
  231.  
  232. [convolutional]
  233. batch_normalize=1
  234. filters=128
  235. size=1
  236. stride=1
  237. pad=1
  238. activation=leaky
  239.  
  240. [convolutional]
  241. batch_normalize=1
  242. filters=256
  243. size=3
  244. stride=1
  245. pad=1
  246. activation=leaky
  247.  
  248. [shortcut]
  249. from=-3
  250. activation=linear
  251.  
  252. [convolutional]
  253. batch_normalize=1
  254. filters=128
  255. size=1
  256. stride=1
  257. pad=1
  258. activation=leaky
  259.  
  260. [convolutional]
  261. batch_normalize=1
  262. filters=256
  263. size=3
  264. stride=1
  265. pad=1
  266. activation=leaky
  267.  
  268. [shortcut]
  269. from=-3
  270. activation=linear
  271.  
  272. [convolutional]
  273. batch_normalize=1
  274. filters=128
  275. size=1
  276. stride=1
  277. pad=1
  278. activation=leaky
  279.  
  280. [convolutional]
  281. batch_normalize=1
  282. filters=256
  283. size=3
  284. stride=1
  285. pad=1
  286. activation=leaky
  287.  
  288. [shortcut]
  289. from=-3
  290. activation=linear
  291.  
  292. # Downsample
  293.  
  294. [convolutional]
  295. batch_normalize=1
  296. filters=512
  297. size=3
  298. stride=2
  299. pad=1
  300. activation=leaky
  301.  
  302. [convolutional]
  303. batch_normalize=1
  304. filters=256
  305. size=1
  306. stride=1
  307. pad=1
  308. activation=leaky
  309.  
  310. [convolutional]
  311. batch_normalize=1
  312. filters=512
  313. size=3
  314. stride=1
  315. pad=1
  316. activation=leaky
  317.  
  318. [shortcut]
  319. from=-3
  320. activation=linear
  321.  
  322.  
  323. [convolutional]
  324. batch_normalize=1
  325. filters=256
  326. size=1
  327. stride=1
  328. pad=1
  329. activation=leaky
  330.  
  331. [convolutional]
  332. batch_normalize=1
  333. filters=512
  334. size=3
  335. stride=1
  336. pad=1
  337. activation=leaky
  338.  
  339. [shortcut]
  340. from=-3
  341. activation=linear
  342.  
  343.  
  344. [convolutional]
  345. batch_normalize=1
  346. filters=256
  347. size=1
  348. stride=1
  349. pad=1
  350. activation=leaky
  351.  
  352. [convolutional]
  353. batch_normalize=1
  354. filters=512
  355. size=3
  356. stride=1
  357. pad=1
  358. activation=leaky
  359.  
  360. [shortcut]
  361. from=-3
  362. activation=linear
  363.  
  364.  
  365. [convolutional]
  366. batch_normalize=1
  367. filters=256
  368. size=1
  369. stride=1
  370. pad=1
  371. activation=leaky
  372.  
  373. [convolutional]
  374. batch_normalize=1
  375. filters=512
  376. size=3
  377. stride=1
  378. pad=1
  379. activation=leaky
  380.  
  381. [shortcut]
  382. from=-3
  383. activation=linear
  384.  
  385. [convolutional]
  386. batch_normalize=1
  387. filters=256
  388. size=1
  389. stride=1
  390. pad=1
  391. activation=leaky
  392.  
  393. [convolutional]
  394. batch_normalize=1
  395. filters=512
  396. size=3
  397. stride=1
  398. pad=1
  399. activation=leaky
  400.  
  401. [shortcut]
  402. from=-3
  403. activation=linear
  404.  
  405.  
  406. [convolutional]
  407. batch_normalize=1
  408. filters=256
  409. size=1
  410. stride=1
  411. pad=1
  412. activation=leaky
  413.  
  414. [convolutional]
  415. batch_normalize=1
  416. filters=512
  417. size=3
  418. stride=1
  419. pad=1
  420. activation=leaky
  421.  
  422. [shortcut]
  423. from=-3
  424. activation=linear
  425.  
  426.  
  427. [convolutional]
  428. batch_normalize=1
  429. filters=256
  430. size=1
  431. stride=1
  432. pad=1
  433. activation=leaky
  434.  
  435. [convolutional]
  436. batch_normalize=1
  437. filters=512
  438. size=3
  439. stride=1
  440. pad=1
  441. activation=leaky
  442.  
  443. [shortcut]
  444. from=-3
  445. activation=linear
  446.  
  447. [convolutional]
  448. batch_normalize=1
  449. filters=256
  450. size=1
  451. stride=1
  452. pad=1
  453. activation=leaky
  454.  
  455. [convolutional]
  456. batch_normalize=1
  457. filters=512
  458. size=3
  459. stride=1
  460. pad=1
  461. activation=leaky
  462.  
  463. [shortcut]
  464. from=-3
  465. activation=linear
  466.  
  467. # Downsample
  468.  
  469. [convolutional]
  470. batch_normalize=1
  471. filters=1024
  472. size=3
  473. stride=2
  474. pad=1
  475. activation=leaky
  476.  
  477. [convolutional]
  478. batch_normalize=1
  479. filters=512
  480. size=1
  481. stride=1
  482. pad=1
  483. activation=leaky
  484.  
  485. [convolutional]
  486. batch_normalize=1
  487. filters=1024
  488. size=3
  489. stride=1
  490. pad=1
  491. activation=leaky
  492.  
  493. [shortcut]
  494. from=-3
  495. activation=linear
  496.  
  497. [convolutional]
  498. batch_normalize=1
  499. filters=512
  500. size=1
  501. stride=1
  502. pad=1
  503. activation=leaky
  504.  
  505. [convolutional]
  506. batch_normalize=1
  507. filters=1024
  508. size=3
  509. stride=1
  510. pad=1
  511. activation=leaky
  512.  
  513. [shortcut]
  514. from=-3
  515. activation=linear
  516.  
  517. [convolutional]
  518. batch_normalize=1
  519. filters=512
  520. size=1
  521. stride=1
  522. pad=1
  523. activation=leaky
  524.  
  525. [convolutional]
  526. batch_normalize=1
  527. filters=1024
  528. size=3
  529. stride=1
  530. pad=1
  531. activation=leaky
  532.  
  533. [shortcut]
  534. from=-3
  535. activation=linear
  536.  
  537. [convolutional]
  538. batch_normalize=1
  539. filters=512
  540. size=1
  541. stride=1
  542. pad=1
  543. activation=leaky
  544.  
  545. [convolutional]
  546. batch_normalize=1
  547. filters=1024
  548. size=3
  549. stride=1
  550. pad=1
  551. activation=leaky
  552.  
  553. [shortcut]
  554. from=-3
  555. activation=linear
  556.  
  557. ######################
  558.  
  559. [convolutional]
  560. batch_normalize=1
  561. filters=512
  562. size=1
  563. stride=1
  564. pad=1
  565. activation=leaky
  566.  
  567. [convolutional]
  568. batch_normalize=1
  569. size=3
  570. stride=1
  571. pad=1
  572. filters=1024
  573. activation=leaky
  574.  
  575. [convolutional]
  576. batch_normalize=1
  577. filters=512
  578. size=1
  579. stride=1
  580. pad=1
  581. activation=leaky
  582.  
  583. ### SPP ###
  584. [maxpool]
  585. stride=1
  586. size=5
  587.  
  588. [route]
  589. layers=-2
  590.  
  591. [maxpool]
  592. stride=1
  593. size=9
  594.  
  595. [route]
  596. layers=-4
  597.  
  598. [maxpool]
  599. stride=1
  600. size=13
  601.  
  602. [route]
  603. layers=-1,-3,-5,-6
  604.  
  605. ### End SPP ###
  606.  
  607. [convolutional]
  608. batch_normalize=1
  609. filters=512
  610. size=1
  611. stride=1
  612. pad=1
  613. activation=leaky
  614.  
  615.  
  616. [convolutional]
  617. batch_normalize=1
  618. size=3
  619. stride=1
  620. pad=1
  621. filters=1024
  622. activation=leaky
  623.  
  624. [convolutional]
  625. batch_normalize=1
  626. filters=512
  627. size=1
  628. stride=1
  629. pad=1
  630. activation=leaky
  631.  
  632.  
  633.  
  634. ########### to [yolo-3]
  635.  
  636.  
  637.  
  638. [route]
  639. layers = -4
  640.  
  641. [convolutional]
  642. batch_normalize=1
  643. filters=256
  644. size=1
  645. stride=1
  646. pad=1
  647. activation=leaky
  648.  
  649. [upsample]
  650. stride=2
  651.  
  652. [route]
  653. layers = -1, 61
  654.  
  655.  
  656.  
  657. [convolutional]
  658. batch_normalize=1
  659. filters=256
  660. size=1
  661. stride=1
  662. pad=1
  663. activation=leaky
  664.  
  665. [convolutional]
  666. batch_normalize=1
  667. size=3
  668. stride=1
  669. pad=1
  670. filters=512
  671. activation=leaky
  672.  
  673. [convolutional]
  674. batch_normalize=1
  675. filters=256
  676. size=1
  677. stride=1
  678. pad=1
  679. activation=leaky
  680.  
  681. [convolutional]
  682. batch_normalize=1
  683. size=3
  684. stride=1
  685. pad=1
  686. filters=512
  687. activation=leaky
  688.  
  689. [convolutional]
  690. batch_normalize=1
  691. filters=256
  692. size=1
  693. stride=1
  694. pad=1
  695. activation=leaky
  696.  
  697.  
  698. ########### to [yolo-2]
  699.  
  700.  
  701.  
  702.  
  703. [route]
  704. layers = -4
  705.  
  706. [convolutional]
  707. batch_normalize=1
  708. filters=128
  709. size=1
  710. stride=1
  711. pad=1
  712. activation=leaky
  713.  
  714. [upsample]
  715. stride=2
  716.  
  717. [route]
  718. layers = -1, 36
  719.  
  720.  
  721.  
  722. [convolutional]
  723. batch_normalize=1
  724. filters=128
  725. size=1
  726. stride=1
  727. pad=1
  728. activation=leaky
  729.  
  730. [convolutional]
  731. batch_normalize=1
  732. size=3
  733. stride=1
  734. pad=1
  735. filters=256
  736. activation=leaky
  737.  
  738. [convolutional]
  739. batch_normalize=1
  740. filters=128
  741. size=1
  742. stride=1
  743. pad=1
  744. activation=leaky
  745.  
  746. [convolutional]
  747. batch_normalize=1
  748. size=3
  749. stride=1
  750. pad=1
  751. filters=256
  752. activation=leaky
  753.  
  754. [convolutional]
  755. batch_normalize=1
  756. filters=128
  757. size=1
  758. stride=1
  759. pad=1
  760. activation=leaky
  761.  
  762.  
  763.  
  764. ########### to [yolo-1]
  765.  
  766.  
  767. ########### features of different layers
  768.  
  769.  
  770. [route]
  771. layers=1
  772.  
  773. [reorg3d]
  774. stride=2
  775.  
  776. [route]
  777. layers=5,-1
  778.  
  779. [reorg3d]
  780. stride=2
  781.  
  782. [route]
  783. layers=12,-1
  784.  
  785. [reorg3d]
  786. stride=2
  787.  
  788. [route]
  789. layers=37,-1
  790.  
  791. [reorg3d]
  792. stride=2
  793.  
  794. [route]
  795. layers=62,-1
  796.  
  797.  
  798.  
  799. ########### [yolo-1]
  800.  
  801. [convolutional]
  802. batch_normalize=1
  803. filters=128
  804. size=1
  805. stride=1
  806. pad=1
  807. activation=leaky
  808.  
  809. [upsample]
  810. stride=4
  811.  
  812. [route]
  813. layers = -1,-12
  814.  
  815.  
  816. [convolutional]
  817. batch_normalize=1
  818. size=3
  819. stride=1
  820. pad=1
  821. filters=256
  822. activation=leaky
  823.  
  824. [convolutional]
  825. size=1
  826. stride=1
  827. pad=1
  828. filters=28
  829. activation=linear
  830.  
  831.  
  832. [yolo]
  833. mask = 0,1,2,3
  834. anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
  835. classes=2
  836. num=12
  837. jitter=.3
  838. ignore_thresh = .7
  839. truth_thresh = 1
  840. scale_x_y = 1.05
  841. random=0
  842.  
  843.  
  844.  
  845.  
  846. ########### [yolo-2]
  847.  
  848.  
  849. [route]
  850. layers = -7
  851.  
  852. [convolutional]
  853. batch_normalize=1
  854. filters=256
  855. size=1
  856. stride=1
  857. pad=1
  858. activation=leaky
  859.  
  860. [upsample]
  861. stride=2
  862.  
  863. [route]
  864. layers = -1,-28
  865.  
  866.  
  867. [convolutional]
  868. batch_normalize=1
  869. size=3
  870. stride=1
  871. pad=1
  872. filters=512
  873. activation=leaky
  874.  
  875. [convolutional]
  876. size=1
  877. stride=1
  878. pad=1
  879. filters=28
  880. activation=linear
  881.  
  882.  
  883. [yolo]
  884. mask = 4,5,6,7
  885. anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
  886. classes=2
  887. num=12
  888. jitter=.3
  889. ignore_thresh = .7
  890. truth_thresh = 1
  891. scale_x_y = 1.1
  892. random=0
  893.  
  894.  
  895.  
  896. ########### [yolo-3]
  897.  
  898. [route]
  899. layers = -14
  900.  
  901. [convolutional]
  902. batch_normalize=1
  903. filters=512
  904. size=1
  905. stride=1
  906. pad=1
  907. activation=leaky
  908.  
  909. [route]
  910. layers = -1,-43
  911.  
  912. [convolutional]
  913. batch_normalize=1
  914. size=3
  915. stride=1
  916. pad=1
  917. filters=1024
  918. activation=leaky
  919.  
  920.  
  921. [convolutional]
  922. size=1
  923. stride=1
  924. pad=1
  925. filters=28
  926. activation=linear
  927.  
  928.  
  929. [yolo]
  930. mask = 8,9,10,11
  931. anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326
  932. classes=2
  933. num=12
  934. jitter=.3
  935. ignore_thresh = .7
  936. truth_thresh = 1
  937. scale_x_y = 1.2
  938. random=0
Advertisement
Add Comment
Please, Sign In to add comment