Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A deep MNIST classifier using convolutional layers.
- This example was adapted from
- https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_deep.py.
- Each worker reads the full MNIST dataset and asynchronously trains a CNN with dropout and using the Adam optimizer,
- updating the model parameters on shared parameter servers.
- The current training accuracy is printed out after every 100 steps.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from tensorflow.examples.tutorials.mnist import input_data
- from threading import Thread
- import json
- import logging
- import os
- import sys
- import tensorflow as tf
- # Input/output directories
- tf.flags.DEFINE_string('data_dir', '/tmp/tensorflow/mnist/input_data',
- 'Directory for storing input data')
- tf.flags.DEFINE_string('working_dir', '/tmp/tensorflow/mnist/working_dir',
- 'Directory under which events and output will be stored (in separate subdirectories).')
- # Training parameters
- tf.flags.DEFINE_integer("steps", 1500, "The number of training steps to execute.")
- tf.flags.DEFINE_integer("batch_size", 64, "The batch size per step.")
- FLAGS = tf.flags.FLAGS
- def deepnn(x):
- """deepnn builds the graph for a deep net for classifying digits.
- Args:
- x: an input tensor with the dimensions (N_examples, 784), where 784 is the
- number of pixels in a standard MNIST image.
- Returns:
- A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
- equal to the logits of classifying the digit into one of 10 classes (the
- digits 0-9). keep_prob is a scalar placeholder for the probability of
- dropout.
- """
- # Reshape to use within a convolutional neural net.
- # Last dimension is for "features" - there is only one here, since images are
- # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
- with tf.name_scope('reshape'):
- x_image = tf.reshape(x, [-1, 28, 28, 1])
- # First convolutional layer - maps one grayscale image to 32 feature maps.
- with tf.name_scope('conv1'):
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- # Pooling layer - downsamples by 2X.
- with tf.name_scope('pool1'):
- h_pool1 = max_pool_2x2(h_conv1)
- # Second convolutional layer -- maps 32 feature maps to 64.
- with tf.name_scope('conv2'):
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- # Second pooling layer.
- with tf.name_scope('pool2'):
- h_pool2 = max_pool_2x2(h_conv2)
- # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
- # is down to 7x7x64 feature maps -- maps this to 1024 features.
- with tf.name_scope('fc1'):
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- # Dropout - controls the complexity of the model, prevents co-adaptation of
- # features.
- with tf.name_scope('dropout'):
- keep_prob = tf.placeholder(tf.float32)
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- # Map the 1024 features to 10 classes, one for each digit
- with tf.name_scope('fc2'):
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
- return y_conv, keep_prob
- def conv2d(x, W):
- """conv2d returns a 2d convolution layer with full stride."""
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- """max_pool_2x2 downsamples a feature map by 2X."""
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
- strides=[1, 2, 2, 1], padding='SAME')
- def weight_variable(shape):
- """weight_variable generates a weight variable of a given shape."""
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- """bias_variable generates a bias variable of a given shape."""
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def create_model():
- """Creates our model and returns the target nodes to be run or populated"""
- # Create the model
- x = tf.placeholder(tf.float32, [None, 784])
- # Define loss and optimizer
- y_ = tf.placeholder(tf.int64, [None])
- # Build the graph for the deep net
- y_conv, keep_prob = deepnn(x)
- with tf.name_scope('loss'):
- cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y_conv)
- cross_entropy = tf.reduce_mean(cross_entropy)
- global_step = tf.train.get_or_create_global_step()
- with tf.name_scope('adam_optimizer'):
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, global_step=global_step)
- with tf.name_scope('accuracy'):
- correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_)
- correct_prediction = tf.cast(correct_prediction, tf.float32)
- accuracy = tf.reduce_mean(correct_prediction)
- tf.summary.scalar('cross_entropy_loss', cross_entropy)
- tf.summary.scalar('accuracy', accuracy)
- merged = tf.summary.merge_all()
- return x, y_, keep_prob, global_step, train_step, accuracy, merged
- def main(_):
- logging.getLogger().setLevel(logging.INFO)
- cluster_spec_str = os.environ["CLUSTER_SPEC"]
- cluster_spec = json.loads(cluster_spec_str)
- ps_hosts = cluster_spec['ps']
- worker_hosts = cluster_spec['worker']
- # Create a cluster from the parameter server and worker hosts.
- cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
- # Create and start a server for the local task.
- job_name = os.environ["JOB_NAME"]
- task_index = int(os.environ["TASK_INDEX"])
- server = tf.train.Server(cluster, job_name=job_name, task_index=task_index)
- if job_name == "ps":
- server.join()
- elif job_name == "worker":
- # Create our model graph. Assigns ops to the local worker by default.
- with tf.device(tf.train.replica_device_setter(
- worker_device="/job:worker/task:%d" % task_index,
- cluster=cluster)):
- features, labels, keep_prob, global_step, train_step, accuracy, merged = create_model()
- if task_index is 0: # chief worker
- tf.gfile.MakeDirs(FLAGS.working_dir)
- # The StopAtStepHook handles stopping after running given steps.
- hooks = [tf.train.StopAtStepHook(num_steps=FLAGS.steps)]
- # Filter all connections except that between ps and this worker to avoid hanging issues when
- # one worker finishes. We are using asynchronous training so there is no need for the workers to communicate.
- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
- config_proto = tf.ConfigProto(gpu_options=gpu_options, device_filters = ['/job:ps', '/job:worker/task:%d' % task_index])
- with tf.train.MonitoredTrainingSession(master=server.target,
- is_chief=(task_index == 0),
- checkpoint_dir=FLAGS.working_dir,
- hooks=hooks,
- config=config_proto) as sess:
- # Import data
- logging.info('Extracting and loading input data...')
- mnist = input_data.read_data_sets(FLAGS.data_dir)
- # Train
- logging.info('Starting training')
- i = 0
- while not sess.should_stop():
- batch = mnist.train.next_batch(FLAGS.batch_size)
- if i % 100 == 0:
- step, _, train_accuracy = sess.run([global_step, train_step, accuracy],
- feed_dict={features: batch[0], labels: batch[1], keep_prob: 1.0})
- logging.info('Step %d, training accuracy: %g' % (step, train_accuracy))
- else:
- sess.run([global_step, train_step],
- feed_dict={features: batch[0], labels: batch[1], keep_prob: 0.5})
- i += 1
- logging.info('Done training!')
- sys.exit()
- if __name__ == '__main__':
- tf.app.run()
Advertisement
Add Comment
Please, Sign In to add comment