Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Traceback (most recent call last):
- File "F:\stable-diffusion\modules\call_queue.py", line 56, in f
- res = list(func(*args, **kwargs))
- File "F:\stable-diffusion\modules\call_queue.py", line 37, in f
- res = func(*args, **kwargs)
- File "F:\stable-diffusion\modules\img2img.py", line 148, in img2img
- processed = process_images(p)
- File "F:\stable-diffusion\modules\processing.py", line 475, in process_images
- res = process_images_inner(p)
- File "F:\stable-diffusion\modules\processing.py", line 610, in process_images_inner
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
- File "F:\stable-diffusion\modules\processing.py", line 1018, in sample
- samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
- File "F:\stable-diffusion\modules\sd_samplers.py", line 518, in sample_img2img
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
- File "F:\stable-diffusion\modules\sd_samplers.py", line 447, in launch_sampling
- return func()
- File "F:\stable-diffusion\modules\sd_samplers.py", line 518, in <lambda>
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
- File "F:\stable-diffusion\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "F:\stable-diffusion\repositories\k-diffusion\k_diffusion\sampling.py", line 145, in sample_euler_ancestral
- denoised = model(x, sigmas[i] * s_in, **extra_args)
- File "F:\stable-diffusion\venv\lib\site-packages\torch\nn\modules\module.py", line 1488, in _call_impl
- return forward_call(*args, **kwargs)
- File "F:\stable-diffusion\modules\sd_samplers.py", line 354, in forward
- devices.test_for_nans(x_out, "unet")
- File "F:\stable-diffusion\modules\devices.py", line 136, in test_for_nans
- raise NansException(message)
- modules.devices.NansException: A tensor with all NaNs was produced in Unet. This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement