Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
- # *Only* converts the UNet, VAE, and Text Encoder.
- # Does not convert optimizer state or any other thing.
- import argparse
- import os.path as osp
- import re
- import torch
- from safetensors.torch import load_file, save_file
- # =================#
- # UNet Conversion #
- # =================#
- unet_conversion_map = [
- # (stable-diffusion, HF Diffusers)
- ("time_embed.0.weight", "time_embedding.linear_1.weight"),
- ("time_embed.0.bias", "time_embedding.linear_1.bias"),
- ("time_embed.2.weight", "time_embedding.linear_2.weight"),
- ("time_embed.2.bias", "time_embedding.linear_2.bias"),
- ("input_blocks.0.0.weight", "conv_in.weight"),
- ("input_blocks.0.0.bias", "conv_in.bias"),
- ("out.0.weight", "conv_norm_out.weight"),
- ("out.0.bias", "conv_norm_out.bias"),
- ("out.2.weight", "conv_out.weight"),
- ("out.2.bias", "conv_out.bias"),
- ]
- unet_conversion_map_resnet = [
- # (stable-diffusion, HF Diffusers)
- ("in_layers.0", "norm1"),
- ("in_layers.2", "conv1"),
- ("out_layers.0", "norm2"),
- ("out_layers.3", "conv2"),
- ("emb_layers.1", "time_emb_proj"),
- ("skip_connection", "conv_shortcut"),
- ]
- unet_conversion_map_layer = []
- # hardcoded number of downblocks and resnets/attentions...
- # would need smarter logic for other networks.
- for i in range(4):
- # loop over downblocks/upblocks
- for j in range(2):
- # loop over resnets/attentions for downblocks
- hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
- sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
- unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
- if i < 3:
- # no attention layers in down_blocks.3
- hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
- sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
- unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
- for j in range(3):
- # loop over resnets/attentions for upblocks
- hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
- sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
- unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
- if i > 0:
- # no attention layers in up_blocks.0
- hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
- sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
- unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
- if i < 3:
- # no downsample in down_blocks.3
- hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
- sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
- unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
- # no upsample in up_blocks.3
- hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
- sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
- unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
- hf_mid_atn_prefix = "mid_block.attentions.0."
- sd_mid_atn_prefix = "middle_block.1."
- unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
- for j in range(2):
- hf_mid_res_prefix = f"mid_block.resnets.{j}."
- sd_mid_res_prefix = f"middle_block.{2*j}."
- unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
- def convert_unet_state_dict(unet_state_dict):
- # buyer beware: this is a *brittle* function,
- # and correct output requires that all of these pieces interact in
- # the exact order in which I have arranged them.
- mapping = {k: k for k in unet_state_dict.keys()}
- for sd_name, hf_name in unet_conversion_map:
- mapping[hf_name] = sd_name
- for k, v in mapping.items():
- if "resnets" in k:
- for sd_part, hf_part in unet_conversion_map_resnet:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- for k, v in mapping.items():
- for sd_part, hf_part in unet_conversion_map_layer:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
- return new_state_dict
- # ================#
- # VAE Conversion #
- # ================#
- vae_conversion_map = [
- # (stable-diffusion, HF Diffusers)
- ("nin_shortcut", "conv_shortcut"),
- ("norm_out", "conv_norm_out"),
- ("mid.attn_1.", "mid_block.attentions.0."),
- ]
- for i in range(4):
- # down_blocks have two resnets
- for j in range(2):
- hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
- sd_down_prefix = f"encoder.down.{i}.block.{j}."
- vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
- if i < 3:
- hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
- sd_downsample_prefix = f"down.{i}.downsample."
- vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
- hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
- sd_upsample_prefix = f"up.{3-i}.upsample."
- vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
- # up_blocks have three resnets
- # also, up blocks in hf are numbered in reverse from sd
- for j in range(3):
- hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
- sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
- vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
- # this part accounts for mid blocks in both the encoder and the decoder
- for i in range(2):
- hf_mid_res_prefix = f"mid_block.resnets.{i}."
- sd_mid_res_prefix = f"mid.block_{i+1}."
- vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
- vae_conversion_map_attn = [
- # (stable-diffusion, HF Diffusers)
- ("norm.", "group_norm."),
- ("q.", "query."),
- ("k.", "key."),
- ("v.", "value."),
- ("proj_out.", "proj_attn."),
- ]
- def reshape_weight_for_sd(w):
- # convert HF linear weights to SD conv2d weights
- return w.reshape(*w.shape, 1, 1)
- def convert_vae_state_dict(vae_state_dict):
- mapping = {k: k for k in vae_state_dict.keys()}
- for k, v in mapping.items():
- for sd_part, hf_part in vae_conversion_map:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- for k, v in mapping.items():
- if "attentions" in k:
- for sd_part, hf_part in vae_conversion_map_attn:
- v = v.replace(hf_part, sd_part)
- mapping[k] = v
- new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
- weights_to_convert = ["q", "k", "v", "proj_out"]
- for k, v in new_state_dict.items():
- for weight_name in weights_to_convert:
- if f"mid.attn_1.{weight_name}.weight" in k:
- print(f"Reshaping {k} for SD format")
- new_state_dict[k] = reshape_weight_for_sd(v)
- return new_state_dict
- # =========================#
- # Text Encoder Conversion #
- # =========================#
- textenc_conversion_lst = [
- # (stable-diffusion, HF Diffusers)
- ("resblocks.", "text_model.encoder.layers."),
- ("ln_1", "layer_norm1"),
- ("ln_2", "layer_norm2"),
- (".c_fc.", ".fc1."),
- (".c_proj.", ".fc2."),
- (".attn", ".self_attn"),
- ("ln_final.", "transformer.text_model.final_layer_norm."),
- ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
- ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
- ]
- protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
- textenc_pattern = re.compile("|".join(protected.keys()))
- # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
- code2idx = {"q": 0, "k": 1, "v": 2}
- def convert_text_enc_state_dict_v20(text_enc_dict):
- new_state_dict = {}
- capture_qkv_weight = {}
- capture_qkv_bias = {}
- for k, v in text_enc_dict.items():
- if (
- k.endswith(".self_attn.q_proj.weight")
- or k.endswith(".self_attn.k_proj.weight")
- or k.endswith(".self_attn.v_proj.weight")
- ):
- k_pre = k[: -len(".q_proj.weight")]
- k_code = k[-len("q_proj.weight")]
- if k_pre not in capture_qkv_weight:
- capture_qkv_weight[k_pre] = [None, None, None]
- capture_qkv_weight[k_pre][code2idx[k_code]] = v
- continue
- if (
- k.endswith(".self_attn.q_proj.bias")
- or k.endswith(".self_attn.k_proj.bias")
- or k.endswith(".self_attn.v_proj.bias")
- ):
- k_pre = k[: -len(".q_proj.bias")]
- k_code = k[-len("q_proj.bias")]
- if k_pre not in capture_qkv_bias:
- capture_qkv_bias[k_pre] = [None, None, None]
- capture_qkv_bias[k_pre][code2idx[k_code]] = v
- continue
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
- new_state_dict[relabelled_key] = v
- for k_pre, tensors in capture_qkv_weight.items():
- if None in tensors:
- raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
- new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
- for k_pre, tensors in capture_qkv_bias.items():
- if None in tensors:
- raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
- relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
- new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
- return new_state_dict
- def convert_text_enc_state_dict(text_enc_dict):
- return text_enc_dict
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
- parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
- parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
- parser.add_argument(
- "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
- )
- args = parser.parse_args()
- assert args.model_path is not None, "Must provide a model path!"
- assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
- # Path for safetensors
- unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
- #vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
- #text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")
- # Load models from safetensors if it exists, if it doesn't pytorch
- if osp.exists(unet_path):
- unet_state_dict = load_file(unet_path, device="cpu")
- else:
- unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
- unet_state_dict = torch.load(unet_path, map_location="cpu")
- #if osp.exists(vae_path):
- # vae_state_dict = load_file(vae_path, device="cpu")
- #else:
- # vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
- # vae_state_dict = torch.load(vae_path, map_location="cpu")
- #if osp.exists(text_enc_path):
- # text_enc_dict = load_file(text_enc_path, device="cpu")
- #else:
- # text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
- # text_enc_dict = torch.load(text_enc_path, map_location="cpu")
- # Convert the UNet model
- #unet_state_dict = convert_unet_state_dict(unet_state_dict)
- #unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
- # Convert the VAE model
- #vae_state_dict = convert_vae_state_dict(vae_state_dict)
- #vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
- # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
- #is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
- is_v20_model = True
- #if is_v20_model:
- # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
- #text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
- #text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
- #text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
- #else:
- #text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
- #text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
- # Put together new checkpoint
- state_dict = {**unet_state_dict}
- if args.half:
- state_dict = {k: v.half() for k, v in state_dict.items()}
- if args.use_safetensors:
- save_file(state_dict, args.checkpoint_path)
- else:
- state_dict = {"state_dict": state_dict}
- torch.save(state_dict, args.checkpoint_path)
Advertisement
Add Comment
Please, Sign In to add comment