SHARE
TWEET

Untitled

a guest Dec 13th, 2016 76 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. /usr/bin/python2.7 /mnt/Data/Projects/ecomobi-microservice/topica_analytic.py
  2. INFO:common.jdbc:Connecting to database
  3.     ->dbname='fb_detail' user='ecodata' host='104.199.222.244' port='5432' password='Eco12387654'
  4. INFO:parameter:Load 907 ids of universities
  5. INFO:parameter:Load 63 ids of provinces
  6. INFO:parameter:Load 7 ids of school types
  7. INFO:parameter:Load 19 ids of majors
  8. /home/chiennd/.local/lib/python2.7/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
  9.   "This module will be removed in 0.20.", DeprecationWarning)
  10. INFO:common.jdbc:Connecting to database
  11.     ->dbname='topica' user='ecomobi' host='localhost' port='2222' password='OD4o9ammD42'
  12. INFO:__main__:Reading data....
  13. sys:1: DtypeWarning: Columns (130,131,132,133) have mixed types. Specify dtype option on import or set low_memory=False.
  14. INFO:__main__:Finish reading data, shape of data: (100361, 137)
  15. INFO:__main__:Create extractor...
  16. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  17.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  18.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  19.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  20.  'highest_school_degree' 'majors' 'university' 'university_type'
  21.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  22.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  23.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  24.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  25.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  26.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  27.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  28.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  29.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  30.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  31.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  32.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  33.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  34.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  35.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  36.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  37.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  38.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  39.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  40.  'olm_onboarding']
  41. ['Unnamed: 0' 'cds_id' 'label' 'mobile' 'id' 'age' 'birthday_year' 'gender'
  42.  'birthday_month' 'birthday_day' 'education' 'work' 'oid' 'address' 'email'
  43.  'first_name' 'hometown' 'locale' 'middle_name' 'last_name' 'phone'
  44.  'relationship_status' 'birth_day' 'fb_id' 'id.1' 'schools'
  45.  'highest_school_degree' 'majors' 'university' 'university_type'
  46.  'university_location' 'id.2' 'hometown_province_id' 'location_province_id'
  47.  'hometown.1' 'location' 'mobile.1' 'id.3' 'value' 'name' 'loc' 'id.4'
  48.  'value.1' 'name.1' 'loc.1' 'cds_id.1' 'email_status'
  49.  'is_email_related_name' 'is_beautiful_mobile_number' 'email.1' 'mobile.2'
  50.  'name.2' 'age_email' 'age_mobile' 'company_email' 'email_name_status'
  51.  'event_type' 'vid' 'statuscall' 'utm_id' 'nganhdk' 'trinhdo'
  52.  'registereddate' 'nganhhoc' 'location_id' 'email.2' 'diemtuyensinh'
  53.  'datelevel3a' 'datelevel3b' 'datelevel3c' 'calldate' 'schoolgrad' 'tvts'
  54.  'callamount' 'totnghiep' 'datelevel1' 'datelevel2' 'datelevel4'
  55.  'datelevel5' 'datelevel6' 'sid' 'datelevel8' 'majorname' 'age.1' 'c5'
  56.  'landing_id' 'school' 'statuscare' 'level' 'mobile.3' 'gender.1' 'notes'
  57.  'datelevel7' 'handoverdate' 'truongdk' 'fullname' 'device_id' 'isc5'
  58.  'cds_id.2' 'appointmentdate' 'sourcetype' 'keyword' 'cid' 'number_contact'
  59.  'created_at' 'c5_date' 'url_id' 'email2' 'id.5' 'sub_id' 'status'
  60.  'crm_status' '_id' 'utm_campaign' 'code_chanel' 'utm_term' 'utm_content'
  61.  'utm_source' 'utm_medium' 'utm_agent' 'utm_team' 'channel' 'cds_id.3'
  62.  'mobile_number' 'mobile_networks' '_id.1' 'landingpage_version'
  63.  'landing_page' 'mau_qc' 'san_pham' 'id_campaign' 'property_aid'
  64.  'id_camp_landingpage' 'id_landingpage' 'kenh_con' 'property_code'
  65.  'olm_onboarding']
  66. After clean: (97279, 31)
  67. After clean: (3082, 31)
  68. ------------------------- Time 0 ---------------------------
  69. Train (90324, 31)
  70. Test (10037, 31)
  71. Number of true-predicted items: 9720
  72. Number of false-predicted items: 317
  73. Label: [ 0.  1.]
  74. True by label: [9673   47]
  75. False by label: [ 55 262]
  76. Accuracy - 0 - 1 - total: [ 0.99434622  0.15210356  0.96841686]
  77. ------------------------- Time 1 ---------------------------
  78. Train (90324, 31)
  79. Test (10037, 31)
  80. Number of true-predicted items: 9726
  81. Number of false-predicted items: 311
  82. Label: [ 0.  1.]
  83. True by label: [9683   43]
  84. False by label: [ 45 266]
  85. Accuracy - 0 - 1 - total: [ 0.99537418  0.13915858  0.96901465]
  86. ------------------------- Time 2 ---------------------------
  87. Train (90325, 31)
  88. Test (10036, 31)
  89. Number of true-predicted items: 9725
  90. Number of false-predicted items: 311
  91. Label: [ 0.  1.]
  92. True by label: [9668   57]
  93. False by label: [ 60 251]
  94. Accuracy - 0 - 1 - total: [ 0.99383224  0.18506494  0.96901156]
  95. ------------------------- Time 3 ---------------------------
  96. Train (90325, 31)
  97. Test (10036, 31)
  98. Number of true-predicted items: 9731
  99. Number of false-predicted items: 305
  100. Label: [ 0.  1.]
  101. True by label: [9680   51]
  102. False by label: [ 48 257]
  103. Accuracy - 0 - 1 - total: [ 0.99506579  0.16558442  0.96960941]
  104. ------------------------- Time 4 ---------------------------
  105. Train (90325, 31)
  106. Test (10036, 31)
  107. Number of true-predicted items: 9751
  108. Number of false-predicted items: 285
  109. Label: [ 0.  1.]
  110. True by label: [9689   62]
  111. False by label: [ 39 246]
  112. Accuracy - 0 - 1 - total: [ 0.99599095  0.2012987   0.97160223]
  113. ------------------------- Time 5 ---------------------------
  114. Train (90325, 31)
  115. Test (10036, 31)
  116. Number of true-predicted items: 9725
  117. Number of false-predicted items: 311
  118. Label: [ 0.  1.]
  119. True by label: [9678   47]
  120. False by label: [ 50 261]
  121. Accuracy - 0 - 1 - total: [ 0.9948602   0.1525974   0.96901156]
  122. ------------------------- Time 6 ---------------------------
  123. Train (90325, 31)
  124. Test (10036, 31)
  125. Number of true-predicted items: 9736
  126. Number of false-predicted items: 300
  127. Label: [ 0.  1.]
  128. True by label: [9685   51]
  129. False by label: [ 43 257]
  130. Accuracy - 0 - 1 - total: [ 0.99557977  0.16558442  0.97010761]
  131. ------------------------- Time 7 ---------------------------
  132. Train (90325, 31)
  133. Test (10036, 31)
  134. Number of true-predicted items: 9719
  135. Number of false-predicted items: 317
  136. Label: [ 0.  1.]
  137. True by label: [9680   39]
  138. False by label: [ 48 269]
  139. Accuracy - 0 - 1 - total: [ 0.99506579  0.12662338  0.96841371]
  140. ------------------------- Time 8 ---------------------------
  141. Train (90325, 31)
  142. Test (10036, 31)
  143. Number of true-predicted items: 9723
  144. Number of false-predicted items: 313
  145. Label: [ 0.  1.]
  146. True by label: [9669   54]
  147. False by label: [ 59 254]
  148. Accuracy - 0 - 1 - total: [ 0.99393503  0.17532468  0.96881228]
  149. ------------------------- Time 9 ---------------------------
  150. Train (90326, 31)
  151. Test (10035, 31)
  152. Number of true-predicted items: 9724
  153. Number of false-predicted items: 311
  154. Label: [ 0.  1.]
  155. True by label: [9682   42]
  156. False by label: [ 45 266]
  157. Accuracy - 0 - 1 - total: [ 0.9953737   0.13636364  0.96900847]
  158. [array([ 0.99434622,  0.15210356,  0.96841686]), array([ 0.99537418,  0.13915858,  0.96901465]), array([ 0.99383224,  0.18506494,  0.96901156]), array([ 0.99506579,  0.16558442,  0.96960941]), array([ 0.99599095,  0.2012987 ,  0.97160223]), array([ 0.9948602 ,  0.1525974 ,  0.96901156]), array([ 0.99557977,  0.16558442,  0.97010761]), array([ 0.99506579,  0.12662338,  0.96841371]), array([ 0.99393503,  0.17532468,  0.96881228]), array([ 0.9953737 ,  0.13636364,  0.96900847])]
  159. Final [ 0.99494239  0.15997037  0.96930083]
  160.  
  161. Process finished with exit code 0
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top