Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import os
- from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
- from cryptography.hazmat.primitives import hashes
- # Constants
- ROUND_COUNT = 14 # For AES-256
- KEY_SIZE = 32 # 32 bytes for AES-256
- BLOCK_SIZE = 16 # AES block size in bytes
- # Full AES S-Box
- S_BOX = [
- 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
- 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
- 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
- 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
- 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
- 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
- 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
- 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
- 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
- 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
- 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
- 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
- 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
- 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
- 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
- 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
- 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
- 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
- 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
- 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
- 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
- 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
- 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
- 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
- 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
- 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
- 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
- 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
- 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
- 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
- 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
- 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
- ]
- # AES Rcon
- RCON = [
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
- 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A
- ]
- def generate_aes_key(password: bytes, salt: bytes = None, iterations: int = 1000000):
- if salt is None:
- salt = os.urandom(16) # 16-byte salt
- kdf = PBKDF2HMAC(
- algorithm=hashes.SHA512(),
- length=KEY_SIZE,
- salt=salt,
- iterations=iterations,
- )
- key = kdf.derive(password)
- return key, salt
- def sub_word(word):
- return [S_BOX[b] for b in word]
- def rot_word(word):
- return word[1:] + word[:1]
- def xor_words(word1, word2):
- return [a ^ b for a, b in zip(word1, word2)]
- def key_expansion(key):
- key_symbols = [b for b in key]
- key_schedule = []
- n_k = KEY_SIZE // 4 # Number of 32-bit words in the key
- n_r = ROUND_COUNT # Number of rounds
- # Initialize the first n_k words of the key schedule with the cipher key
- for i in range(n_k):
- key_schedule.append(key_symbols[4*i : 4*(i+1)])
- # Generate the rest of the key schedule
- for i in range(n_k, 4*(n_r+1)):
- temp = key_schedule[i - 1][:]
- if i % n_k == 0:
- temp = xor_words(sub_word(rot_word(temp)), [RCON[(i//n_k)-1], 0, 0, 0])
- elif n_k > 6 and i % n_k == 4:
- temp = sub_word(temp)
- key_schedule.append(xor_words(key_schedule[i - n_k], temp))
- # Convert key schedule into a list of round keys
- round_keys = [key_schedule[4*i : 4*(i+1)] for i in range(n_r+1)]
- return round_keys
- def add_round_key(state, round_key):
- return [[state[row][col] ^ round_key[row][col] for col in range(4)] for row in range(4)]
- def sub_bytes(state):
- return [[S_BOX[byte] for byte in row] for row in state]
- def shift_rows(state):
- shifted_state = []
- for r in range(4):
- shifted_state.append(state[r][r:] + state[r][:r])
- return shifted_state
- def mix_columns(state):
- def xtime(a):
- return (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)
- def mix_single_column(a):
- t = a[0] ^ a[1] ^ a[2] ^ a[3]
- u = a[0]
- a[0] ^= t ^ xtime(a[0] ^ a[1])
- a[1] ^= t ^ xtime(a[1] ^ a[2])
- a[2] ^= t ^ xtime(a[2] ^ a[3])
- a[3] ^= t ^ xtime(a[3] ^ u)
- return a
- state_columns = [list(col) for col in zip(*state)]
- for i in range(4):
- state_columns[i] = mix_single_column(state_columns[i])
- mixed_state = [list(row) for row in zip(*state_columns)]
- return mixed_state
- def aes_encrypt_block(plaintext_block, round_keys):
- state = [list(plaintext_block[i:i+4]) for i in range(0, 16, 4)]
- # Initial Round
- state = add_round_key(state, round_keys[0])
- # Main Rounds
- for round_num in range(1, ROUND_COUNT):
- state = sub_bytes(state)
- state = shift_rows(state)
- state = mix_columns(state)
- state = add_round_key(state, round_keys[round_num])
- # Final Round
- state = sub_bytes(state)
- state = shift_rows(state)
- state = add_round_key(state, round_keys[ROUND_COUNT])
- # Flatten the state to get the ciphertext block
- ciphertext_block = [state[row][col] for col in range(4) for row in range(4)]
- return bytes(ciphertext_block)
- def pad_data(data):
- padding_len = BLOCK_SIZE - (len(data) % BLOCK_SIZE)
- padding = bytes([padding_len] * padding_len)
- return data + padding
- def generate_and_print_keys(password: bytes, iterations: int = 1000000):
- for i in range(1, 101): # Generate 100 keys
- try:
- generated_key, used_salt = generate_aes_key(password, iterations=iterations)
- round_keys = key_expansion(generated_key)
- # For demonstration, the AES functions are implemented but not used here
- hex_key = generated_key.hex().upper()
- print(f"Key {i}:\nGenerated 256-bit key (hexadecimal):\n{hex_key}\n")
- except ValueError as ve:
- print(ve)
- input("Press Enter to exit...")
- if __name__ == "__main__":
- user_password = input("Enter password: ").encode()
- generate_and_print_keys(user_password)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement