Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from typing import Optional, Tuple
- from einops import rearrange
- """
- Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
- update imports to use 'triton_pre_mlir'
- Differences between this Triton version and the CUDA version:
- - Triton version doesn't support dropout.
- - Triton forward is generally faster than CUDA forward, while Triton backward is
- generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
- than CUDA forward + backward.
- - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
- - Triton version supports attention bias, while CUDA version doesn't.
- """
- import math
- import torch._dynamo
- import torch
- import triton_pre_mlir as triton
- import triton_pre_mlir.language as tl
- # Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
- # @triton.autotune(
- # configs=[
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
- # # This config has a race condition when EVEN_M == False, disabling it for now.
- # # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
- # ],
- # key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
- # )
- @triton.heuristics(
- {
- "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
- "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
- "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
- }
- )
- @triton.jit
- def _fwd_kernel(
- Q, K, V, Bias, Out,
- Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
- softmax_scale,
- stride_qb, stride_qh, stride_qm,
- stride_kb, stride_kh, stride_kn,
- stride_vb, stride_vh, stride_vn,
- stride_bb, stride_bh, stride_bm,
- stride_ob, stride_oh, stride_om,
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
- CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
- BIAS_TYPE: tl.constexpr,
- IS_CAUSAL: tl.constexpr,
- BLOCK_HEADDIM: tl.constexpr,
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
- ):
- start_m = tl.program_id(0)
- off_hb = tl.program_id(1)
- off_b = off_hb // nheads
- off_h = off_hb % nheads
- # off_b = tl.program_id(1)
- # off_h = tl.program_id(2)
- # off_hb = off_b * nheads + off_h
- # initialize offsets
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- offs_n = tl.arange(0, BLOCK_N)
- offs_d = tl.arange(0, BLOCK_HEADDIM)
- # Initialize pointers to Q, K, V
- # Adding parenthesis around indexing might use int32 math instead of int64 math?
- # https://github.com/openai/triton/issues/741
- # I'm seeing a tiny bit of difference (5-7us)
- q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
- k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
- v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
- if BIAS_TYPE == 'vector':
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
- elif BIAS_TYPE == 'matrix':
- b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
- # initialize pointer to m and l
- t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
- lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
- acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
- # load q: it will stay in SRAM throughout
- # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
- # tl.load(q_ptrs), we get the wrong output!
- if EVEN_M & EVEN_N:
- if EVEN_HEADDIM:
- q = tl.load(q_ptrs)
- else:
- q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
- else:
- if EVEN_HEADDIM:
- q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
- else:
- q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
- other=0.0)
- # loop over k, v and update accumulator
- end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
- for start_n in range(0, end_n, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
- if EVEN_HEADDIM:
- k = tl.load(k_ptrs + start_n * stride_kn)
- else:
- k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
- else:
- if EVEN_HEADDIM:
- k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
- other=0.0)
- else:
- k = tl.load(k_ptrs + start_n * stride_kn,
- mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
- other=0.0)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k, trans_b=True)
- # Trying to combine the two masks seem to make the result wrong
- if not EVEN_N: # Need to mask out otherwise the softmax is wrong
- qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
- if IS_CAUSAL:
- qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
- if BIAS_TYPE != 'none':
- if BIAS_TYPE == 'vector':
- if EVEN_N:
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
- else:
- bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32)
- bias = bias[None, :]
- elif BIAS_TYPE == 'matrix':
- if EVEN_M & EVEN_N:
- bias = tl.load(b_ptrs + start_n).to(tl.float32)
- else:
- bias = tl.load(b_ptrs + start_n,
- mask=(offs_m[:, None] < seqlen_q)
- & ((start_n + offs_n)[None, :] < seqlen_k),
- other=0.0).to(tl.float32)
- # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
- # can then fuse the mult and add into an fma instruction. But if we have bias we need to
- # to multiply with softmax_scale here.
- qk = qk * softmax_scale + bias
- m_ij = tl.maximum(tl.max(qk, 1), lse_i)
- p = tl.exp(qk - m_ij[:, None])
- else:
- m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
- p = tl.exp(qk * softmax_scale - m_ij[:, None])
- l_ij = tl.sum(p, 1)
- # scale acc_o
- acc_o_scale = tl.exp(m_i - m_ij)
- # # -- update output accumulator --
- # BUG: have to store and immediately load
- tl.store(t_ptrs, acc_o_scale)
- acc_o_scale = tl.load(t_ptrs)
- acc_o = acc_o * acc_o_scale[:, None]
- # update acc_o
- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
- if EVEN_HEADDIM:
- v = tl.load(v_ptrs + start_n * stride_vn)
- else:
- v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
- else:
- if EVEN_HEADDIM:
- v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
- other=0.0)
- else:
- v = tl.load(v_ptrs + start_n * stride_vn,
- mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
- other=0.0)
- p = p.to(v.dtype)
- acc_o += tl.dot(p, v)
- # -- update statistics
- m_i = m_ij
- l_i_new = tl.exp(lse_i - m_ij) + l_ij
- lse_i = m_ij + tl.log(l_i_new)
- o_scale = tl.exp(m_i - lse_i)
- # BUG: have to store and immediately load
- tl.store(t_ptrs, o_scale)
- o_scale = tl.load(t_ptrs)
- acc_o = acc_o * o_scale[:, None]
- # rematerialize offsets to save registers
- start_m = tl.program_id(0)
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- # write back l and m
- lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
- tl.store(lse_ptrs, lse_i)
- # initialize pointers to output
- offs_d = tl.arange(0, BLOCK_HEADDIM)
- out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
- if EVEN_M:
- if EVEN_HEADDIM:
- tl.store(out_ptrs, acc_o)
- else:
- tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
- else:
- if EVEN_HEADDIM:
- tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
- else:
- tl.store(out_ptrs, acc_o,
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
- @triton.jit
- def _bwd_preprocess_do_o_dot(
- Out, DO, Delta,
- stride_ob, stride_oh, stride_om,
- stride_dob, stride_doh, stride_dom,
- nheads, seqlen_q, seqlen_q_rounded, headdim,
- BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
- ):
- start_m = tl.program_id(0)
- off_hb = tl.program_id(1)
- off_b = off_hb // nheads
- off_h = off_hb % nheads
- # initialize offsets
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- offs_d = tl.arange(0, BLOCK_HEADDIM)
- # load
- o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
- do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
- mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
- delta = tl.sum(o * do, axis=1)
- # write-back
- tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
- @triton.jit
- def _bwd_store_dk_dv(
- dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
- ):
- # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
- # if we just call tl.store(dv_ptrs), there's a race condition
- if EVEN_N & EVEN_M:
- if EVEN_HEADDIM:
- tl.store(dv_ptrs, dv)
- tl.store(dk_ptrs, dk)
- else:
- tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
- tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
- else:
- if EVEN_HEADDIM:
- tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
- tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
- else:
- tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
- tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
- @triton.jit
- def _bwd_kernel_one_col_block(
- start_n,
- Q, K, V, Bias,
- DO, DQ, DK, DV,
- LSE, D,
- softmax_scale,
- stride_qm, stride_kn, stride_vn, stride_bm,
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
- seqlen_q, seqlen_k, headdim,
- ATOMIC_ADD: tl.constexpr,
- BIAS_TYPE: tl.constexpr,
- IS_CAUSAL: tl.constexpr,
- BLOCK_HEADDIM: tl.constexpr,
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
- ):
- # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
- begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
- # initialize row/col offsets
- offs_qm = begin_m + tl.arange(0, BLOCK_M)
- offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
- offs_m = tl.arange(0, BLOCK_M)
- offs_d = tl.arange(0, BLOCK_HEADDIM)
- # initialize pointers to value-like data
- q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
- k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
- v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
- do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
- dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
- if BIAS_TYPE == 'vector':
- b_ptrs = Bias + offs_n
- elif BIAS_TYPE == 'matrix':
- b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
- # initialize dv and dk
- dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
- dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
- # There seems to be some problem with Triton pipelining that makes results wrong for
- # headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
- # may have zero step, and pipelining with the bias matrix could screw it up.
- # So we just exit early.
- if begin_m >= seqlen_q:
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
- return
- # k and v stay in SRAM throughout
- # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
- # if we just call tl.load(k_ptrs), we get the wrong output!
- if EVEN_N & EVEN_M:
- if EVEN_HEADDIM:
- k = tl.load(k_ptrs)
- v = tl.load(v_ptrs)
- else:
- k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
- v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
- else:
- if EVEN_HEADDIM:
- k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
- v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
- else:
- k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
- other=0.0)
- v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
- other=0.0)
- # loop over rows
- num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
- for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
- start_m = tl.multiple_of(start_m, BLOCK_M)
- offs_m_curr = start_m + offs_m
- # load q, k, v, do on-chip
- # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
- if EVEN_M & EVEN_HEADDIM:
- q = tl.load(q_ptrs)
- else:
- if EVEN_HEADDIM:
- q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
- else:
- q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
- & (offs_d[None, :] < headdim), other=0.0)
- # recompute p = softmax(qk, dim=-1).T
- qk = tl.dot(q, k, trans_b=True)
- # Trying to combine the two masks seem to make the result wrong
- if not EVEN_N: # Need to mask out otherwise the softmax is wrong
- qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
- if IS_CAUSAL:
- qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
- if BIAS_TYPE != 'none':
- tl.debug_barrier() # Race condition otherwise
- if BIAS_TYPE == 'vector':
- if EVEN_N:
- bias = tl.load(b_ptrs).to(tl.float32)
- else:
- bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
- bias = bias[None, :]
- elif BIAS_TYPE == 'matrix':
- if EVEN_M & EVEN_N:
- bias = tl.load(b_ptrs).to(tl.float32)
- else:
- bias = tl.load(b_ptrs,
- mask=(offs_m_curr[:, None] < seqlen_q)
- & (offs_n[None, :] < seqlen_k),
- other=0.0).to(tl.float32)
- qk = qk * softmax_scale + bias
- # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
- # Also wrong for headdim=64.
- if not (EVEN_M & EVEN_HEADDIM):
- tl.debug_barrier()
- lse_i = tl.load(LSE + offs_m_curr)
- if BIAS_TYPE == 'none':
- p = tl.exp(qk * softmax_scale - lse_i[:, None])
- else:
- p = tl.exp(qk - lse_i[:, None])
- # compute dv
- # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
- # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
- # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
- # the output is correct.
- if EVEN_M & EVEN_HEADDIM:
- do = tl.load(do_ptrs)
- else:
- # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
- do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
- & (offs_d[None, :] < headdim), other=0.0)
- # if EVEN_M:
- # if EVEN_HEADDIM:
- # do = tl.load(do_ptrs)
- # else:
- # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
- # else:
- # if EVEN_HEADDIM:
- # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
- # else:
- # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
- # & (offs_d[None, :] < headdim), other=0.0)
- dv += tl.dot(p.to(do.dtype), do, trans_a=True)
- # compute dp = dot(v, do)
- # There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
- # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
- # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
- if not (EVEN_M & EVEN_HEADDIM):
- tl.debug_barrier()
- dp = tl.dot(do, v, trans_b=True)
- # There's a race condition for headdim=48
- if not EVEN_HEADDIM:
- tl.debug_barrier()
- # compute ds = p * (dp - delta[:, None])
- # Putting the subtraction after the dp matmul (instead of before) is slightly faster
- Di = tl.load(D + offs_m_curr)
- # Converting ds to q.dtype here reduces register pressure and makes it much faster
- # for BLOCK_HEADDIM=128
- ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
- # compute dk = dot(ds.T, q)
- dk += tl.dot(ds, q, trans_a=True)
- # compute dq
- if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix'
- tl.debug_barrier()
- if not ATOMIC_ADD:
- if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
- dq = tl.load(dq_ptrs, eviction_policy="evict_last")
- dq += tl.dot(ds, k)
- tl.store(dq_ptrs, dq, eviction_policy="evict_last")
- else:
- if EVEN_HEADDIM:
- dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
- eviction_policy="evict_last")
- dq += tl.dot(ds, k)
- tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
- eviction_policy="evict_last")
- else:
- dq = tl.load(dq_ptrs,
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
- other=0.0, eviction_policy="evict_last")
- dq += tl.dot(ds, k)
- tl.store(dq_ptrs, dq,
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
- eviction_policy="evict_last")
- else: # If we're parallelizing across the seqlen_k dimension
- dq = tl.dot(ds, k)
- if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
- tl.atomic_add(dq_ptrs, dq)
- else:
- if EVEN_HEADDIM:
- tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
- else:
- tl.atomic_add(dq_ptrs, dq,
- mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
- # increment pointers
- dq_ptrs += BLOCK_M * stride_dqm
- q_ptrs += BLOCK_M * stride_qm
- do_ptrs += BLOCK_M * stride_dom
- if BIAS_TYPE == 'matrix':
- b_ptrs += BLOCK_M * stride_bm
- # write-back
- dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
- dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
- _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
- def init_to_zero(name):
- return lambda nargs: nargs[name].zero_()
- @triton.autotune(
- configs=[
- triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1,
- pre_hook=init_to_zero('DQ')),
- triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1,
- pre_hook=init_to_zero('DQ')),
- # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
- # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
- # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
- # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
- # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
- ],
- key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
- )
- @triton.heuristics(
- {
- "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
- "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
- "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
- }
- )
- @triton.jit
- def _bwd_kernel(
- Q, K, V, Bias,
- DO, DQ, DK, DV,
- LSE, D,
- softmax_scale,
- stride_qb, stride_qh, stride_qm,
- stride_kb, stride_kh, stride_kn,
- stride_vb, stride_vh, stride_vn,
- stride_bb, stride_bh, stride_bm,
- stride_dob, stride_doh, stride_dom,
- stride_dqb, stride_dqh, stride_dqm,
- stride_dkb, stride_dkh, stride_dkn,
- stride_dvb, stride_dvh, stride_dvn,
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
- CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
- BIAS_TYPE: tl.constexpr,
- IS_CAUSAL: tl.constexpr,
- BLOCK_HEADDIM: tl.constexpr,
- SEQUENCE_PARALLEL: tl.constexpr,
- EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
- BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
- ):
- off_hb = tl.program_id(1)
- off_b = off_hb // nheads
- off_h = off_hb % nheads
- # offset pointers for batch/head
- Q += off_b * stride_qb + off_h * stride_qh
- K += off_b * stride_kb + off_h * stride_kh
- V += off_b * stride_vb + off_h * stride_vh
- DO += off_b * stride_dob + off_h * stride_doh
- DQ += off_b * stride_dqb + off_h * stride_dqh
- DK += off_b * stride_dkb + off_h * stride_dkh
- DV += off_b * stride_dvb + off_h * stride_dvh
- if BIAS_TYPE != 'none':
- Bias += off_b * stride_bb + off_h * stride_bh
- # pointer to row-wise quantities in value-like data
- D += off_hb * seqlen_q_rounded
- LSE += off_hb * seqlen_q_rounded
- if not SEQUENCE_PARALLEL:
- num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
- for start_n in range(0, num_block_n):
- _bwd_kernel_one_col_block(
- start_n,
- Q, K, V, Bias,
- DO, DQ, DK, DV,
- LSE, D,
- softmax_scale,
- stride_qm, stride_kn, stride_vn, stride_bm,
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
- seqlen_q, seqlen_k, headdim,
- ATOMIC_ADD=False,
- BIAS_TYPE=BIAS_TYPE,
- IS_CAUSAL=IS_CAUSAL,
- BLOCK_HEADDIM=BLOCK_HEADDIM,
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
- BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
- )
- else:
- start_n = tl.program_id(0)
- _bwd_kernel_one_col_block(
- start_n,
- Q, K, V, Bias,
- DO, DQ, DK, DV,
- LSE, D,
- softmax_scale,
- stride_qm, stride_kn, stride_vn, stride_bm,
- stride_dom, stride_dqm, stride_dkn, stride_dvn,
- seqlen_q, seqlen_k, headdim,
- ATOMIC_ADD=True,
- BIAS_TYPE=BIAS_TYPE,
- IS_CAUSAL=IS_CAUSAL,
- BLOCK_HEADDIM=BLOCK_HEADDIM,
- EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
- BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
- )
- def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
- # shape constraints
- batch, seqlen_q, nheads, d = q.shape
- _, seqlen_k, _, _ = k.shape
- assert k.shape == (batch, seqlen_k, nheads, d)
- assert v.shape == (batch, seqlen_k, nheads, d)
- assert d <= 128, 'FlashAttention only support head dimensions up to 128'
- assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
- assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
- assert q.is_cuda and k.is_cuda and v.is_cuda
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
- has_bias = bias is not None
- bias_type = 'none'
- if has_bias:
- assert bias.dtype in [q.dtype, torch.float]
- assert bias.is_cuda
- assert bias.dim() == 4
- if bias.stride(-1) != 1:
- bias = bias.contiguous()
- if bias.shape[2:] == (1, seqlen_k):
- bias_type = 'vector'
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
- bias_type = 'matrix'
- else:
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
- ' or (seqlen_q, seqlen_k)')
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
- lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
- tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
- o = torch.empty_like(q)
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
- BLOCK = 128
- num_warps = 4 if d <= 64 else 8
- grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
- _fwd_kernel[grid](
- q, k, v, bias, o,
- lse, tmp,
- softmax_scale,
- q.stride(0), q.stride(2), q.stride(1),
- k.stride(0), k.stride(2), k.stride(1),
- v.stride(0), v.stride(2), v.stride(1),
- *bias_strides,
- o.stride(0), o.stride(2), o.stride(1),
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
- seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
- # Can't use kwargs here because triton autotune expects key to be args, not kwargs
- # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
- bias_type, causal, BLOCK_HEADDIM,
- BLOCK_M=BLOCK, BLOCK_N=BLOCK,
- num_warps=num_warps,
- num_stages=1,
- )
- return o, lse, softmax_scale # softmax_scale could have been updated
- def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
- # Make sure that the last dimension is contiguous
- if do.stride(-1) != 1:
- do = do.contiguous()
- batch, seqlen_q, nheads, d = q.shape
- _, seqlen_k, _, _ = k.shape
- # assert d in {16, 32, 64, 128}
- assert d <= 128
- seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
- assert lse.shape == (batch, nheads, seqlen_q_rounded)
- assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
- assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
- softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
- # dq_accum = torch.zeros_like(q, dtype=torch.float32)
- dq_accum = torch.empty_like(q, dtype=torch.float32)
- delta = torch.empty_like(lse)
- # delta = torch.zeros_like(lse)
- BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
- grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
- _bwd_preprocess_do_o_dot[grid](
- o, do, delta,
- o.stride(0), o.stride(2), o.stride(1),
- do.stride(0), do.stride(2), do.stride(1),
- nheads, seqlen_q, seqlen_q_rounded, d,
- BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM,
- )
- has_bias = bias is not None
- bias_type = 'none'
- if has_bias:
- assert bias.dtype in [q.dtype, torch.float]
- assert bias.is_cuda
- assert bias.dim() == 4
- assert bias.stride(-1) == 1
- if bias.shape[2:] == (1, seqlen_k):
- bias_type = 'vector'
- elif bias.shape[2:] == (seqlen_q, seqlen_k):
- bias_type = 'matrix'
- else:
- raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
- ' or (seqlen_q, seqlen_k)')
- bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
- bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
- # BLOCK_M = 128
- # BLOCK_N = 64
- # num_warps = 4
- grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
- batch * nheads)
- _bwd_kernel[grid](
- q, k, v, bias,
- do, dq_accum, dk, dv,
- lse, delta,
- softmax_scale,
- q.stride(0), q.stride(2), q.stride(1),
- k.stride(0), k.stride(2), k.stride(1),
- v.stride(0), v.stride(2), v.stride(1),
- *bias_strides,
- do.stride(0), do.stride(2), do.stride(1),
- dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
- dk.stride(0), dk.stride(2), dk.stride(1),
- dv.stride(0), dv.stride(2), dv.stride(1),
- nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
- seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
- # Can't use kwargs here because triton autotune expects key to be args, not kwargs
- # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
- bias_type, causal, BLOCK_HEADDIM,
- # SEQUENCE_PARALLEL=False,
- # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
- # num_warps=num_warps,
- # num_stages=1,
- )
- dq.copy_(dq_accum)
- class FlashAttnQKVPackedFunc(torch.autograd.Function):
- @staticmethod
- def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
- """
- qkv: (batch, seqlen, 3, nheads, headdim)
- bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
- ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
- """
- # Make sure that the last dimension is contiguous
- if qkv.stride(-1) != 1:
- qkv = qkv.contiguous()
- o, lse, ctx.softmax_scale = _flash_attn_forward(
- qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal,
- softmax_scale=softmax_scale
- )
- ctx.save_for_backward(qkv, o, lse, bias)
- ctx.causal = causal
- return o
- @staticmethod
- def backward(ctx, do):
- qkv, o, lse, bias = ctx.saved_tensors
- assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
- with torch.inference_mode():
- dqkv = torch.empty_like(qkv)
- _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
- dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
- return dqkv, None, None, None
- flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
- class FlashAttnKVPackedFunc(torch.autograd.Function):
- @staticmethod
- def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
- """
- q: (batch, seqlen_q, nheads, headdim)
- kv: (batch, seqlen_k, 2, nheads, headdim)
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
- """
- # Make sure that the last dimension is contiguous
- q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
- o, lse, ctx.softmax_scale = _flash_attn_forward(
- q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
- )
- ctx.save_for_backward(q, kv, o, lse, bias)
- ctx.causal = causal
- return o
- @staticmethod
- def backward(ctx, do):
- q, kv, o, lse, bias = ctx.saved_tensors
- if len(ctx.needs_input_grad) >= 3:
- assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
- with torch.inference_mode():
- dq = torch.empty_like(q)
- dkv = torch.empty_like(kv)
- _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse,
- dq, dkv[:, :, 0], dkv[:, :, 1],
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
- return dq, dkv, None, None, None
- flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
- class FlashAttnFunc(torch.autograd.Function):
- @staticmethod
- def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
- """
- q: (batch_size, seqlen_q, nheads, headdim)
- k, v: (batch_size, seqlen_k, nheads, headdim)
- bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
- For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
- ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
- """
- # Make sure that the last dimension is contiguous
- q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
- o, lse, ctx.softmax_scale = _flash_attn_forward(
- q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
- )
- ctx.save_for_backward(q, k, v, o, lse, bias)
- ctx.causal = causal
- return o
- @staticmethod
- def backward(ctx, do):
- q, k, v, o, lse, bias = ctx.saved_tensors
- assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
- # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
- # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
- with torch.inference_mode():
- dq = torch.empty_like(q)
- dk = torch.empty_like(k)
- dv = torch.empty_like(v)
- _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
- bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
- return dq, dk, dv, None, None, None
- flash_attn_func = FlashAttnFunc.apply
- def triton_flash_attn_fn(
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- n_heads: int,
- softmax_scale: Optional[float] = None,
- attn_bias: Optional[torch.Tensor] = None,
- is_causal: bool = False,
- multiquery: bool = False,
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor,
- torch.Tensor]]]:
- """Flash attention with Triton backend."""
- query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
- key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
- value = rearrange(value,
- 'b s (h d) -> b s h d',
- h=1 if multiquery else n_heads)
- attn_output = flash_attn_func( # type: ignore
- query, key, value, attn_bias, is_causal, softmax_scale)
- output = attn_output.view(*attn_output.shape[:2], -1) # type: ignore
- return output
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement