MatsGranvik

The Beta function and the functional equation and pseudo inverse of matrix

May 27th, 2022 (edited)
104
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.32 KB | None | 0 0
  1. $$\xi(s) := \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)$$
  2. $$\xi(s) = \xi(1 - s)$$
  3. $$\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)$$
  4. $$\frac{\pi^{-s/2}\ \pi^{-c/2}}{\pi^{-s/2-c/2+1/2}}\ \frac{\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{c}{2}\right)}{\Gamma\left(\frac{s}{2}+\frac{c}{2}-\frac{1}{2}\right)}\ \frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}=\frac{\pi^{-(1-s)/2}\ \pi^{-(1-c)/2}}{\pi^{-((1-s)+(1-c)-(1-1))/2}}\ \frac{\Gamma\left(\frac{1-s}{2}\right)\ \Gamma\left(\frac{1-c}{2}\right)}{\Gamma\left(\frac{1-s}{2}+\frac{1-c}{2}-\frac{1-1}{2}\right)}\ \frac{\zeta(1-s)\ \zeta(1-c)}{\zeta((1-s)+(1-c)-(1-1))}$$
  5. $$\frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}$$
  6.  
  7.  
  8. Pseudo inverse of von Mangoldt function matrix or Ceta(s,c) as it could be called.
  9.  
  10. (*start*)
  11. (*fungerande 8.10.2016 klockan 1:31 Riemann zeta zero spectrum*)
  12. Clear[n, k, nn, s, c, M, A, B, a, t]
  13. a = 4;
  14. nn = 42;
  15. Print["set s=0 and c=1+epsilon, or, s=1+epsilon and c=0 to get a \
  16. matrix that corresponds to zeta zero spectrum"]
  17. s = 8;
  18. Print["s=", s]
  19. c = 9;(*c=1+1/100000... ger matrisen för Riemann zeta zero spectrumet*)
  20. \
  21.  
  22. Print["c=", c]
  23. M = Inverse[
  24. Table[Table[If[Mod[n, k] == 0, 1/(n/k)^s, 0], {k, 1, nn}], {n, 1,
  25. nn}]];
  26. A = Inverse[
  27. Table[Table[If[Mod[n, k] == 0, k^c, 0], {k, 1, nn}], {n, 1, nn}]];
  28. B = Transpose[
  29. Table[Table[If[Mod[n, k] == 0, k/n^s, 0], {k, 1, nn}], {n, 1, nn}]];
  30. Print["the matrix M.M.A.B where A.B is the Ramanujan sum matrix and M \
  31. is the Möbius function matrix"]
  32. Print["M.M.A.B is the pseudo inverse of the von Mangoldt function \
  33. matrix"]
  34. MatrixForm[(M.M.A.B)[[1 ;; 12, 1 ;; 12]]]
  35. Print["sum of the ", a, "-th column"]
  36. (Transpose[Transpose[M.M.A.B*Range[nn]^(c*0)]*Range[nn]^(s*0)])[[All,
  37. a]];
  38. N[Total[%], 30]
  39. Print["generating function of the ", a, "-th column"]
  40. N[(Total[Divisors[a]^(1 - c)])/Zeta[c]/Zeta[s]^2/a^s, 30]
  41. Print["sum of the whole matrix"]
  42. Total[Total[N[M.M.A.B, 30]]]
  43. Print["generating function for the whole matrix"]
  44. N[Zeta[s + c - 1]/(Zeta[s]*Zeta[c]), 30]
  45. Print["these differences gives a hint at what the row generating \
  46. functions should be"]
  47. (((Transpose[Transpose[A.B*Range[nn]^(c*1)]*Range[nn]^(s*1)])[[a,
  48. All]]) - ((Transpose[
  49. Transpose[M.M.A.B*Range[nn]^(c*1)]*Range[nn]^(s*1)])[[a, All]]))
  50. (*end*)
Add Comment
Please, Sign In to add comment