Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{beamer}
- \usetheme{Copenhagen}
- \title{Decision Making Models}
- \author{Shawn Gu}
- \date{July XX, 2013}
- \begin{document}
- \begin{frame}
- \titlepage
- \end{frame}
- \section{Introduction}
- \begin{frame}
- \begin{itemize}
- \pause \item Models for making decisions between two options.
- \pause \item In general, models work by integrating evidence.
- \pause \item Depending on the model, a decision is made when the evidence reaches a certain value, or the sign of
- the accumulator after a certain amount of time.
- \end{itemize}
- \end{frame}
- \begin{frame}
- \begin{figure}
- \includegraphics[width=3in]{ExampleHypotheses.eps} \footnote{\scriptsize Figure from ``The Neural Basis of Decision Making'' Gold, Shadlen}
- \caption{}
- \end{figure}
- \begin{itemize}
- \item If the evidence accumulated reaches either threshold, a decision is made corresponding to the threshold.
- \end{itemize}
- \end{frame}
- \begin{frame}
- \begin{figure}
- \includegraphics[width=2.5in]{otherDMaking.eps} \footnote{\scriptsize Figure slightly modified from ``Rats and Humans can Optimally Accumulate Evidence for Decision Making'' Brunton}
- \caption{Red and green arrows represent evidence.}
- \end{figure}
- \begin{itemize}
- \item After a certain amount of time, a decision is made based on if the evidence accumulated is positive or negative.
- \end{itemize}
- \end{frame}
- \section{Drift Diffusion}
- \begin{frame}
- \begin{itemize}
- \pause \item Modeled by
- \begin{align}
- dx &= Adt + cdW
- \end{align}
- \pause \item $Adt$ represents average increase in evidence supporting correct choice per time unit. Sign of A depends on which hypothesis is correct.
- \pause \item $cdW$ represents white noise, modeled by a Wiener process (also called Brownian motion)
- \begin{figure}
- \includegraphics[height=1.5in]{randomBrownian.eps}
- \caption{\scriptsize 5 randomly generated traces of a Wiener process (correcsponding to $dW$)}
- \end{figure}
- \end{itemize}
- \end{frame}
- \subsection{Stochastic Differential Equations}
- \begin{frame}
- \begin{itemize}
- \pause \item Differential equation with one or more terms as a stochastic process, meaning the solution is a stochastic process as well.
- \pause \item Solved numerically using the Euler-Maruyama method
- \begin{enumerate}
- \pause \item Extention of Euler's method for normal differential equations.
- \pause \item For an equation of the form
- \begin{align}
- dX(t) &= f(X(t))dt + g(X(t))dW(t), X(0) = X_0, 0 \le t \le T
- \end{align}
- EM takes the form
- \begin{align}
- X_j &= X_{j-1} + f(X_{j-1})\Delta t + g(X_{j-1})(W_j-W_{j-1}), j = 1,2,..,L
- \end{align}
- where $\Delta t$ is $T / L$ for some positive integer L. Note that if $g = 0$, we get the normal Euler method (corresponding to a normal differential equation).
- \end{enumerate}
- \end{itemize}
- \end{frame}
- \subsection{DDM}
- \begin{frame}
- \begin{figure}
- \includegraphics[height=2in]{5examplesEM.eps}
- \caption{\scriptsize 5 realizations of $dx = dt + 2dW$ using EM.}
- \end{figure}
- \end{frame}
- \begin{frame}
- \begin{itemize}
- \pause \item From this, we can see a few things to consider.
- \pause \item In particular, first passage times of the model ie how long it takes to make a decision.
- \pause \item If we make the barrier higher, we can be more sure of our decision. However, it will take longer to get there.
- \pause \item Is there some threshold value that maximizes the reward rate (defined as proportion of correct trials over average time between decisions)?
- \end{itemize}
- \end{frame}
- \begin{frame}
- \begin{figure}
- \includegraphics[height=2in]{RRvsThresh.eps}
- \caption{\scriptsize Reward Rate vs. Threshold for $dx = dt + 2dW$.}
- \end{figure}
- \begin{itemize}
- \pause \item As you can see, there is a threshold value that maximizes the reward rate.
- %include Bogacz as well?
- \end{itemize}
- \end{frame}
- \section{Ornstein-Uhlenbeck Process}
- \begin{frame}
- \begin{itemize}
- \pause \item Simple drift diffusion may not be optimal for describing decision making, as it has ``no destination''.
- \pause \item Instead, we can use the Ornstein Uhlenbeck process, which is ``mean-reverting''.
- \end{itemize}
- \end{frame}
- \begin{frame}
- \begin{itemize}
- \pause \item Modeled by
- \begin{align}
- dx &= (\lambda x + A)dt + cdW, x(0) = 0
- \end{align}
- \pause \item Addition of the $\lambda x$ term .
- \pause \item $A$ determines where the mean ``reverts'' to. $c$ determines how noisy the process is around the mean.
- \end{itemize}
- \end{frame}
- \begin{frame}
- \begin{figure}
- \includegraphics[height=2in]{exampleOUTrace.eps}
- \caption{\scriptsize For $dx = (-x - 4)dt + dW$.}
- \end{figure}
- \end{frame}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment