Advertisement
Guest User

Untitled

a guest
Mar 5th, 2023
54
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.62 KB | None | 0 0
  1. def training_loop(batch1, output1, batch2, output2):
  2.     with tf.GradientTape() as tape:
  3.         predictions1 = model1(batch1)
  4.         loss1 = your_loss_function1(predictions1, output1)
  5.  
  6.     gradients = tape.gradient(loss1 , model1.trainable_weights)
  7.     loss_optimizer1.apply_gradients(zip(gradients, model1.trainable_weights))
  8.  
  9.     with tf.GradientTape() as tape:
  10.         predictions2 = model1(batch2)
  11.         loss2 = your_loss_function2(predictions2, output2)
  12.  
  13.     gradients = tape.gradient(loss2 , model2.trainable_weights)
  14.     loss_optimizer2.apply_gradients(zip(gradients, model2.trainable_weights))
  15.  
  16.     return loss1, loss2
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement