Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ./llama-cli -m /media/user/data/DSQ3/DeepSeek-V3-Q3_K_M/DeepSeek-V3-Q3_K_M-00001-of-00008.gguf --prompt "List the instructions to make honeycomb candy" -t 56 --no-context-shift --n-gpu-layers 25
- ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
- ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
- ggml_cuda_init: found 3 CUDA devices:
- Device 0: NVIDIA A100-SXM-64GB, compute capability 8.0, VMM: yes
- Device 1: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
- Device 2: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
- build: 4425 (6369f867) with cc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 for x86_64-linux-gnu
- main: llama backend init
- main: load the model and apply lora adapter, if any
- llama_model_load_from_file: using device CUDA0 (NVIDIA A100-SXM-64GB) - 64274 MiB free
- llama_model_load_from_file: using device CUDA1 (NVIDIA RTX A6000) - 48400 MiB free
- llama_model_load_from_file: using device CUDA2 (NVIDIA RTX A6000) - 48400 MiB free
- llama_model_loader: additional 7 GGUFs metadata loaded.
- llama_model_loader: loaded meta data with 51 key-value pairs and 1025 tensors from /media/user/data/DSQ3/DeepSeek-V3-Q3_K_M/DeepSeek-V3-Q3_K_M-00001-of-00008.gguf (version GGUF V3 (latest))
- llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
- llama_model_loader: - kv 0: general.architecture str = deepseek2
- llama_model_loader: - kv 1: general.type str = model
- llama_model_loader: - kv 2: general.name str = DeepSeek V3 Bf16
- llama_model_loader: - kv 3: general.size_label str = 256x20B
- llama_model_loader: - kv 4: general.base_model.count u32 = 1
- llama_model_loader: - kv 5: general.base_model.0.name str = DeepSeek V3
- llama_model_loader: - kv 6: general.base_model.0.version str = V3
- llama_model_loader: - kv 7: general.base_model.0.organization str = Deepseek Ai
- llama_model_loader: - kv 8: general.base_model.0.repo_url str = https://huggingface.co/deepseek-ai/De...
- llama_model_loader: - kv 9: deepseek2.block_count u32 = 61
- llama_model_loader: - kv 10: deepseek2.context_length u32 = 163840
- llama_model_loader: - kv 11: deepseek2.embedding_length u32 = 7168
- llama_model_loader: - kv 12: deepseek2.feed_forward_length u32 = 18432
- llama_model_loader: - kv 13: deepseek2.attention.head_count u32 = 128
- llama_model_loader: - kv 14: deepseek2.attention.head_count_kv u32 = 128
- llama_model_loader: - kv 15: deepseek2.rope.freq_base f32 = 10000.000000
- llama_model_loader: - kv 16: deepseek2.attention.layer_norm_rms_epsilon f32 = 0.000001
- llama_model_loader: - kv 17: deepseek2.expert_used_count u32 = 8
- llama_model_loader: - kv 18: general.file_type u32 = 12
- llama_model_loader: - kv 19: deepseek2.leading_dense_block_count u32 = 3
- llama_model_loader: - kv 20: deepseek2.vocab_size u32 = 129280
- llama_model_loader: - kv 21: deepseek2.attention.q_lora_rank u32 = 1536
- llama_model_loader: - kv 22: deepseek2.attention.kv_lora_rank u32 = 512
- llama_model_loader: - kv 23: deepseek2.attention.key_length u32 = 192
- llama_model_loader: - kv 24: deepseek2.attention.value_length u32 = 128
- llama_model_loader: - kv 25: deepseek2.expert_feed_forward_length u32 = 2048
- llama_model_loader: - kv 26: deepseek2.expert_count u32 = 256
- llama_model_loader: - kv 27: deepseek2.expert_shared_count u32 = 1
- llama_model_loader: - kv 28: deepseek2.expert_weights_scale f32 = 2.500000
- llama_model_loader: - kv 29: deepseek2.expert_weights_norm bool = true
- llama_model_loader: - kv 30: deepseek2.expert_gating_func u32 = 2
- llama_model_loader: - kv 31: deepseek2.rope.dimension_count u32 = 64
- llama_model_loader: - kv 32: deepseek2.rope.scaling.type str = yarn
- llama_model_loader: - kv 33: deepseek2.rope.scaling.factor f32 = 40.000000
- llama_model_loader: - kv 34: deepseek2.rope.scaling.original_context_length u32 = 4096
- llama_model_loader: - kv 35: deepseek2.rope.scaling.yarn_log_multiplier f32 = 0.100000
- llama_model_loader: - kv 36: tokenizer.ggml.model str = gpt2
- llama_model_loader: - kv 37: tokenizer.ggml.pre str = deepseek-v3
- llama_model_loader: - kv 38: tokenizer.ggml.tokens arr[str,129280] = ["<|begin▁of▁sentence|>", "<�...
- llama_model_loader: - kv 39: tokenizer.ggml.token_type arr[i32,129280] = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
- llama_model_loader: - kv 40: tokenizer.ggml.merges arr[str,127741] = ["Ġ t", "Ġ a", "i n", "Ġ Ġ", "h e...
- llama_model_loader: - kv 41: tokenizer.ggml.bos_token_id u32 = 0
- llama_model_loader: - kv 42: tokenizer.ggml.eos_token_id u32 = 1
- llama_model_loader: - kv 43: tokenizer.ggml.padding_token_id u32 = 1
- llama_model_loader: - kv 44: tokenizer.ggml.add_bos_token bool = true
- llama_model_loader: - kv 45: tokenizer.ggml.add_eos_token bool = false
- llama_model_loader: - kv 46: tokenizer.chat_template str = {% if not add_generation_prompt is de...
- llama_model_loader: - kv 47: general.quantization_version u32 = 2
- llama_model_loader: - kv 48: split.no u16 = 0
- llama_model_loader: - kv 49: split.count u16 = 8
- llama_model_loader: - kv 50: split.tensors.count i32 = 1025
- llama_model_loader: - type f32: 361 tensors
- llama_model_loader: - type q3_K: 483 tensors
- llama_model_loader: - type q4_K: 177 tensors
- llama_model_loader: - type q5_K: 3 tensors
- llama_model_loader: - type q6_K: 1 tensors
- llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
- llm_load_vocab: special tokens cache size = 818
- llm_load_vocab: token to piece cache size = 0.8223 MB
- llm_load_print_meta: format = GGUF V3 (latest)
- llm_load_print_meta: arch = deepseek2
- llm_load_print_meta: vocab type = BPE
- llm_load_print_meta: n_vocab = 129280
- llm_load_print_meta: n_merges = 127741
- llm_load_print_meta: vocab_only = 0
- llm_load_print_meta: n_ctx_train = 163840
- llm_load_print_meta: n_embd = 7168
- llm_load_print_meta: n_layer = 61
- llm_load_print_meta: n_head = 128
- llm_load_print_meta: n_head_kv = 128
- llm_load_print_meta: n_rot = 64
- llm_load_print_meta: n_swa = 0
- llm_load_print_meta: n_embd_head_k = 192
- llm_load_print_meta: n_embd_head_v = 128
- llm_load_print_meta: n_gqa = 1
- llm_load_print_meta: n_embd_k_gqa = 24576
- llm_load_print_meta: n_embd_v_gqa = 16384
- llm_load_print_meta: f_norm_eps = 0.0e+00
- llm_load_print_meta: f_norm_rms_eps = 1.0e-06
- llm_load_print_meta: f_clamp_kqv = 0.0e+00
- llm_load_print_meta: f_max_alibi_bias = 0.0e+00
- llm_load_print_meta: f_logit_scale = 0.0e+00
- llm_load_print_meta: n_ff = 18432
- llm_load_print_meta: n_expert = 256
- llm_load_print_meta: n_expert_used = 8
- llm_load_print_meta: causal attn = 1
- llm_load_print_meta: pooling type = 0
- llm_load_print_meta: rope type = 0
- llm_load_print_meta: rope scaling = yarn
- llm_load_print_meta: freq_base_train = 10000.0
- llm_load_print_meta: freq_scale_train = 0.025
- llm_load_print_meta: n_ctx_orig_yarn = 4096
- llm_load_print_meta: rope_finetuned = unknown
- llm_load_print_meta: ssm_d_conv = 0
- llm_load_print_meta: ssm_d_inner = 0
- llm_load_print_meta: ssm_d_state = 0
- llm_load_print_meta: ssm_dt_rank = 0
- llm_load_print_meta: ssm_dt_b_c_rms = 0
- llm_load_print_meta: model type = 671B
- llm_load_print_meta: model ftype = Q3_K - Medium
- llm_load_print_meta: model params = 671.03 B
- llm_load_print_meta: model size = 297.27 GiB (3.81 BPW)
- llm_load_print_meta: general.name = DeepSeek V3 Bf16
- llm_load_print_meta: BOS token = 0 '<|begin▁of▁sentence|>'
- llm_load_print_meta: EOS token = 1 '<|end▁of▁sentence|>'
- llm_load_print_meta: EOT token = 1 '<|end▁of▁sentence|>'
- llm_load_print_meta: PAD token = 1 '<|end▁of▁sentence|>'
- llm_load_print_meta: LF token = 131 'Ä'
- llm_load_print_meta: FIM PRE token = 128801 '<|fim▁begin|>'
- llm_load_print_meta: FIM SUF token = 128800 '<|fim▁hole|>'
- llm_load_print_meta: FIM MID token = 128802 '<|fim▁end|>'
- llm_load_print_meta: EOG token = 1 '<|end▁of▁sentence|>'
- llm_load_print_meta: max token length = 256
- llm_load_print_meta: n_layer_dense_lead = 3
- llm_load_print_meta: n_lora_q = 1536
- llm_load_print_meta: n_lora_kv = 512
- llm_load_print_meta: n_ff_exp = 2048
- llm_load_print_meta: n_expert_shared = 1
- llm_load_print_meta: expert_weights_scale = 2.5
- llm_load_print_meta: expert_weights_norm = 1
- llm_load_print_meta: expert_gating_func = sigmoid
- llm_load_print_meta: rope_yarn_log_mul = 0.1000
- llm_load_tensors: offloading 25 repeating layers to GPU
- llm_load_tensors: offloaded 25/62 layers to GPU
- llm_load_tensors: CUDA0 model buffer size = 52145.17 MiB
- llm_load_tensors: CUDA1 model buffer size = 41716.14 MiB
- llm_load_tensors: CUDA2 model buffer size = 36501.62 MiB
- llm_load_tensors: CPU_Mapped model buffer size = 42134.38 MiB
- llm_load_tensors: CPU_Mapped model buffer size = 41716.14 MiB
- llm_load_tensors: CPU_Mapped model buffer size = 41716.14 MiB
- llm_load_tensors: CPU_Mapped model buffer size = 41716.14 MiB
- llm_load_tensors: CPU_Mapped model buffer size = 6760.53 MiB
- ....................................................................................................
- llama_new_context_with_model: n_seq_max = 1
- llama_new_context_with_model: n_ctx = 4096
- llama_new_context_with_model: n_ctx_per_seq = 4096
- llama_new_context_with_model: n_batch = 2048
- llama_new_context_with_model: n_ubatch = 512
- llama_new_context_with_model: flash_attn = 0
- llama_new_context_with_model: freq_base = 10000.0
- llama_new_context_with_model: freq_scale = 0.025
- llama_new_context_with_model: n_ctx_per_seq (4096) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
- llama_kv_cache_init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 61, can_shift = 0
- llama_kv_cache_init: CUDA0 KV buffer size = 3200.00 MiB
- llama_kv_cache_init: CUDA1 KV buffer size = 2560.00 MiB
- llama_kv_cache_init: CUDA2 KV buffer size = 2240.00 MiB
- llama_kv_cache_init: CPU KV buffer size = 11520.00 MiB
- llama_new_context_with_model: KV self size = 19520.00 MiB, K (f16): 11712.00 MiB, V (f16): 7808.00 MiB
- llama_new_context_with_model: CPU output buffer size = 0.49 MiB
- llama_new_context_with_model: CUDA0 compute buffer size = 3630.00 MiB
- llama_new_context_with_model: CUDA1 compute buffer size = 1186.00 MiB
- llama_new_context_with_model: CUDA2 compute buffer size = 1186.00 MiB
- llama_new_context_with_model: CUDA_Host compute buffer size = 88.01 MiB
- llama_new_context_with_model: graph nodes = 5025
- llama_new_context_with_model: graph splits = 675 (with bs=512), 5 (with bs=1)
- common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
- common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
- main: llama threadpool init, n_threads = 56
- system_info: n_threads = 56 (n_threads_batch = 56) / 112 | CUDA : ARCHS = 800,860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
- sampler seed: 2144914929
- sampler params:
- repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
- dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
- top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
- mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
- sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
- generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
- List the instructions to make honeycomb candy.
- To make honeycomb candy, also known as cinder toffee or hokey pokey, you'll need the following ingredients and instructions:
- ### Ingredients:
- - 1 cup granulated sugar
- - 1/4 cup light corn syrup (or golden syrup)
- - 1 tablespoon water
- - 2 teaspoons baking soda
- - 1 teaspoon vanilla extract (optional)
- ### Instructions:
- 1. **Prepare Your Pan:**
- - Line a baking sheet with parchment paper or a silicone baking mat. Have it ready before you start cooking.
- 2. **Combine Sugar, Corn Syrup, and Water:**
- - In a medium-sized heavy-bottomed saucepan, combine the sugar, corn syrup, and water. Stir gently to mix.
- 3. **Heat the Mixture:**
- - Place the saucepan over medium heat. Stir occasionally until the sugar has completely dissolved. Once dissolved, stop stirring and let the mixture come to a boil.
- 4. **Boil the Syrup:**
- - Allow the syrup to boil without stirring. Insert a candy thermometer if you have one, and cook until the temperature reaches 300°F (150°C), which is the hard crack stage. If you don’t have a thermometer, you can test by dropping a small amount of the syrup into a bowl of cold water; it should form hard, brittle threads.
- 5. **Remove from Heat:**
- - Once the syrup reaches the correct temperature, immediately remove the saucepan from the heat.
- 6. **Add Baking Soda and Vanilla:**
- - Quickly add the baking soda and vanilla extract (if using) to the syrup. Be careful as the mixture will foam up significantly. Stir gently to combine.
- 7. **Pour onto Prepared Pan:**
- - Immediately pour the foamy mixture onto your prepared baking sheet. Do not spread it out; the mixture will spread on its own.
- 8. **Cool and Set:**
- - Allow the honeycomb candy to cool completely at room temperature. This will take about 1-2 hours.
- 9. **Break into Pieces:**
- - Once the candy has cooled and hardened, break it into pieces using your hands or a knife.
- 10. **Store:**
- - Store the honeycomb candy in an airtight container to keep it crisp. It can be enjoyed as is or used as a topping for desserts.
- ### Tips:
- - Be careful when working with hot sugar syrup as it can cause severe burns.
- - The baking soda is crucial for creating the honeycomb texture, so make sure it’s fresh and active.
- - If you want to add a chocolate coating, you can melt some chocolate and dip the pieces in it before letting them set.
- Enjoy your homemade honeycomb candy! [end of text]
- llama_perf_sampler_print: sampling time = 48.19 ms / 569 runs ( 0.08 ms per token, 11808.65 tokens per second)
- llama_perf_context_print: load time = 23622.38 ms
- llama_perf_context_print: prompt eval time = 543.71 ms / 9 tokens ( 60.41 ms per token, 16.55 tokens per second)
- llama_perf_context_print: eval time = 63513.76 ms / 559 runs ( 113.62 ms per token, 8.80 tokens per second)
- llama_perf_context_print: total time = 64207.58 ms / 568 tokens
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement