Advertisement
Guest User

USERKIN

a guest
Sep 12th, 2024
104
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 20.91 KB | None | 0 0
  1. C User Kinetics Subroutine for RPLUG---GASIFIER.
  2.  
  3. C$ #1 BY: JERRY CHANG, DATE: 4-FEB-2009.
  4.  
  5. SUBROUTINE USRKIN (SOUT, NSUBS, IDXSUB, ITYPE, NINT,
  6. 2 INT, NREAL, REAL, IDS, NPO,
  7. 3 NBOPST, NIWORK, IWORK, NWORK, WORK,
  8. 4 NC, NR, STOIC, RATES, FLUXM,
  9. 5 FLUXS, XCURR, NTCAT, RATCAT, NTSSAT,
  10. 6 RATSSA, KCALL, KFAIL, KFLASH, NCOMP,
  11. 7 IDX, Y, X, X1, X2,
  12. 8 NRALL, RATALL, NUSERV, USERV, NINTR,
  13. 9 INTR, NREALR, REALR, NIWR, IWR,
  14. * NWR, WR, NRL, RATEL, NRV,
  15. 1 RATEV)
  16.  
  17. C************************************************************************
  18. C COPYRIGHT (C) 1989 *
  19. C ASPEN TECHNOLOGY, INC. *
  20. C CAMBRIDGE, MA *
  21. C************************************************************************
  22.  
  23. C-------------------------------------------------------------------------
  24. C The models of C+O2, C+H2O, C+CO2, C+H2 and CO+H2O are based on C.-Y.
  25. C Wen et al.'s work (C.-Y. Wen and T.-Z. Chaung, Entrainment Coal
  26. C Gasification Modeling, Ind. Eng. Chem. Process Des. Dev., 1979,
  27. C 18(4): 684-695).
  28.  
  29. C The model of S+H2 is modified according to the model of C+H2 in C.-Y.
  30. C Wen et al.'s work.
  31.  
  32. C The model of CH4+H2O is modified according to the model of CH4+H2O in
  33. C C.-Y. Wen et al.'s work.
  34.  
  35. C The models of CO+O2, H2+O2 and CH4+O2 are from the book (K.-F. Cen,
  36. C M.-J. Ni, Z.-Y. Luo, Theory, Desigh and Operation of Circulating
  37. C Fluidized Bed Boilers, Beijing: Chinese Electric Power Press, 1998).
  38. C-------------------------------------------------------------------------
  39.  
  40. C%%%%%%%%%%%%CO + O2 = CO2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  41. C R = 30.9*EXP(-9.976E4/8.315/T)*CCO*CO2
  42. C (UNIT: T = K; CCO, CO2 = MOL/M**3; R = MOL/M**3/S)
  43. C
  44. C%%%%%%%%%%%%H2 + 0.5O2 = H2O%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  45. C R = 8.83E5*EXP(-9.976E4/8.315/T)*CH2*CO2
  46. C (UNIT: T = K; CH2, CO2 = MOL/M**3; R = MOL/M**3/S)
  47. C
  48. C%%%%%%%%%%%%CH4 + 2O2 = CO2 + 2H2O%%%%%%%%%%%%%%%%%%%%%%%
  49. C R = 3.552E11*EXP(-9.304E5/8.315/T)*CCH4*CO2
  50. C (UNIT: T = K; CCH4, CO2 = MOL/M**3; R = MOL/M**3/S)
  51. C
  52. C%%%%%%%%%%%%CO + H2O = CO2 + H2%%%%%%%%%%%%%%%%%%%%%%%%%%
  53. C R = FW*2.77E5*(XCO-XCOA)*EXP(-27760/(1.987*T))
  54. C *PT**(0.5-PT/250)*EXP(-8.91+5553/T)
  55. C WHERE FW = ADJUSTABLE PARAMETER, WHICH REPRESENTS THE RELATIVE CATALYTIC
  56. C REACTIVITY OF ASH TO THAT OF IRON-BASE CATALYST. IN THIS MODEL,
  57. C FW IS SELECTED TO BE 0.2.
  58. C XCO = PCO/PT;
  59. C XCOA= 1/PT*(PCO2*PH2/(KEQ*PH2O))
  60. C KEQ = EXP(-3.6893+7234/(1.8*T))
  61. C (UNIT: T = K; PCO, PCO2, PH2, PH2O, PT = ATM; R = MOL/S/(G OF ASH))
  62. C
  63. C%%%%%%%%%%%%CH4 + H2O = CO + 3H2%%%%%%%%%%%%%%%%%%%%%%%%%
  64. C R = 312*EXP(-30000/(1.987*T))*(CCH4-CCO*CH2**3/(CH2O*KEQ))
  65. C WHERE KEQ = EXP(33.1371-25014.0499/T)
  66. C (UNIT: T = K; CCH4, CCO, CH2, CH2O = MOL/M**3; R = MOL/M**3/S)
  67. C
  68. C%%%%%%%%%%%%C+O2, C+H2O, C+CO2, C+H2 AND S+H2%%%%%%%%%%%%
  69. C GENERAL KINETIC EQUATION
  70. C R = 1/(1/KDIFF+1/(KS*Y**2)+1/KDASH*(1/Y-1))*DELTAP
  71. C WHERE Y = ((1-X)/(1-F))**0.333
  72. C X = COAL CONVERSION AT ANY TIME AFTER PYROLYSIS IS COMPLETED,
  73. C BASED ON ORIGINAL DMMF COAL.
  74. C F = COAL CONVERSION WHEN PYROLYSIS IS COMPLETED,
  75. C BASED ON ORIGINAL DMMF COAL.
  76. C KDASH = KDIFF*VOID**N
  77. C VOID = VOIDAGE IN THE ASH LAYER, WHICH IS SELECTED TO BE 0.75 IN
  78. C THIS MODEL.
  79. C N = CONSTANT RANGING FROM 2 TO 3, WHICH IS SELECTED TO BE 2.5 IN
  80. C THIS MODEL.
  81. C (UNIT: DELTAP = ATM;
  82. C R = (G OF CARBON OR SULFUR)/(CM**2 OF COAL SURFACE AREA)/S)
  83. C
  84. C %%%%%%C + (1/PHI)O2 = 2*(1-1/PHI)CO + (2/PHI-1)CO2%%%%%%
  85. C KDIFF = 0.292*PHI*(4.26/T)*(T/1800)**1.75/(PT*DP)
  86. C KS = 8710*EXP(-17967/T)
  87. C DELTAP = PO2
  88. C WHERE DP = DIAMETER OF COAL PARTICLE
  89. C PHI = (2*Z+2)/(Z+2) (WHEN DP<0.005)
  90. C PHI = ((2*Z+2)-Z*(DP-0.005)/0.095)/(Z+2) (WHEN 0.005<=DP<=0.1 )
  91. C PHI = 1 (WHEN DP>0.1 )
  92. C Z = 2500*EXP(-6249/T)
  93. C (UNIT: T = K; PO2, PT = ATM; DP = CM)
  94. C
  95. C %%%%%%C + H2O = CO + H2%%%%%%
  96. C KDIFF = 10E-4*(T/2000)**0.75/(PT*DP)
  97. C KS = 247*EXP(-21060/T)
  98. C DELTAP = PH2O-PH2*PCO/KEQ
  99. C WHERE KEQ = EXP(17.644-30260/(1.8*T))
  100. C (UNIT: T = K; PH2O, PH2, PCO, PT = ATM; DP =CM)
  101. C
  102. C %%%%%%C + CO2 = 2CO%%%%%%
  103. C KDIFF = 7.45E-4*(T/2000)**0.75/(PT*DP)
  104. C KS = 247*EXP(-21060/T)
  105. C DELTAP = PCO2
  106. C (UNIT: T = K; PCO2, PT = ATM; DP = CM)
  107. C
  108. C %%%%%%C + 2H2 = CH4%%%%%%
  109. C KDIFF = 1.33E-3*(T/2000)**0.75/(PT*DP)
  110. C KS = 0.12*EXP(-17921/T)
  111. C DELTAP = PH2-SQRT(PCH4/KEQ)
  112. C WHERE KEQ = 0.175/34713*EXP(18400/(1.8*T))
  113. C (UNIT: T = K; PH2, PCH4, PT = ATM; DP = CM)
  114. C
  115. C %%%%%%S + H2 = H2S%%%%%%
  116. C KDIFF = 1.33E-3*(T/2000)**0.75/(PT*DP)
  117. C KS = 0.12*EXP(-17921/T)
  118. C DELTAP = PH2-PH2S/KEQ
  119. C WHERE KEQ = EXP(-5.0657+18557.7225/T)
  120. C (UNIT: T = K; PH2, PH2S, PT = ATM; DP = CM)
  121. C-------------------------------------------------------------------------
  122.  
  123. IMPLICIT NONE
  124. C
  125. C DECLARE VARIABLES USED IN DIMENSIONING
  126. C
  127. INTEGER NSUBS, NINT, NPO, NIWORK, NWORK,
  128. + NC, NR, NTCAT, NTSSAT, NCOMP,
  129. + NRALL, NUSERV, NINTR, NREALR, NIWR,
  130. + NWR
  131. C
  132. #include "ppexec_user.cmn"
  133. EQUIVALENCE (RMISS, USER_RUMISS)
  134. EQUIVALENCE (IMISS, USER_IUMISS)
  135. #include "dms_ncomp.cmn"
  136. #include "rplg_rplugr.cmn"
  137. #include "rxn_rprops.cmn"
  138. EQUIVALENCE (TEMP, RPROPS_UTEMP )
  139. EQUIVALENCE (PRES, RPROPS_UPRES )
  140. EQUIVALENCE (VFRAC, RPROPS_UVFRAC)
  141. EQUIVALENCE (BETA, RPROPS_UBETA )
  142. EQUIVALENCE (VVAP, RPROPS_UVVAP )
  143. EQUIVALENCE (VLIQ, RPROPS_UVLIQ )
  144. EQUIVALENCE (VLIQS, RPROPS_UVLIQS)
  145. EQUIVALENCE (B(1), IB(1) )
  146. C
  147. #include "pputl_ppglob.cmn"
  148. #include "dms_maxwrt.cmn"
  149. #include "dms_plex.cmn"
  150.  
  151. C DECLARE ARGUMENTS
  152. C
  153. INTEGER IDXSUB(NSUBS), ITYPE(NSUBS), INT(NINT), IDS(2),
  154. + NBOPST(6,NPO), IWORK(NIWORK), IDX(NCOMP), INTR(NINTR),
  155. + IWR(NIWR), NREAL, KCALL, KFAIL,
  156. + KFLASH, NRL, NRV, I,
  157. + IMISS, KDIAG, KV, KER,
  158. + DMS_IFCMNC, LMW, LMWI
  159. C
  160. REAL*8 SOUT(1), WORK(NWORK), STOIC(NC,NSUBS,NR),
  161. + RATES(1), FLUXM(1), FLUXS(1), RATCAT(NTCAT),
  162. + RATSSA(NTSSAT),Y(NCOMP), X(NCOMP), X1(NCOMP),
  163. + X2(NCOMP)
  164. C
  165. REAL*8 RATALL(NRALL), USERV(NUSERV), REALR(NREALR),
  166. + WR(NWR), RATEL(1), RATEV(1), XCURR,
  167. + XMW(1), B(1), TEMP, PRES,
  168. + RGAS, PI
  169. C
  170. REAL*8 REAL(NREAL), RMISS, XLEN, DIAM,
  171. + VFRAC, BETA, VVAP, VLIQ,
  172. + VLIQS, VMXV, DVMX
  173. C
  174. REAL*8 FCOAL, FO2, FSTEAM, NO2,
  175. + NCO, NH2, NCO2, NH2O,
  176. + NH2S, NN2, NCH4, NC6H6,
  177. + NTOTG, NCARGAS, YO2, YCO,
  178. + YH2, YCO2, YH2O, YH2S,
  179. + YN2, YCH4, YC6H6, YMOIS,
  180. + YC, YASH, XCOALF, XCOAL,
  181. + XC, DP, VOID, DENSI,
  182. + DREACT, VBED
  183. C
  184. REAL*8 PO2, PCO, PH2, PCO2,
  185. + PH2O, PH2S, PN2, PCH4,
  186. + PC6H6, PAMBI, PT, TG,
  187. + TS, TM
  188. C
  189. REAL*8 RCR, Z, PHI, KDIFF,
  190. + KS, KDASH, KOVER, KEQ,
  191. + KCOO2, KH2O2, KCH4O2, KCOH2O,
  192. + KCH4H2O, DPO2, DPH2O, DPCO2,
  193. + DPH2, DPCO, DCCH4, CO2,
  194. + CCO, CH2, CCO2, CH2O,
  195. + CCH4, FW, XCO, XCOEQ,
  196. + RCARO2, RCARH2O, RCARCO2, RCARH2,
  197. + RSULH2, RCOO2, RH2O2, RCH4O2,
  198. + RCOH2O, RCH4H2O
  199. C
  200. C BEGIN EXECUTABLE CODE
  201. C --------------------------------------------------------------------------
  202. C INPUT PARAMETERS FOR THIS SUBROUTINE, WHICH ARE TRANSFERED WITH THE HELP
  203. C OF CALCULATOR "GASIFICAL".
  204. C
  205. C %%%COAL STREAM%%%
  206. C (1)FLOW RATE (FCOAL, KG/S); (2)PARTICLE DIAMETER (DP, CM);
  207. C (3)DENSITY (DENSI, KG/M**3); (4)MOISTURE FRACTION (YMOIS, UNITLESS);
  208. C (5)CARBON FRACTION (YC, UNITLESS); (6)ASH FRACTION (YASH, UNITLESS).
  209. C
  210. C %%%OXYGEN AND STEAM STREAMS%%%
  211. C (7)FLOW RATE OF O2 (FO2, KG/S); (8)FLOW RATE OF STEAM (KG/S)
  212. C
  213. C (9)COAL CONVERSION ONCE COAL PYROLYSIS IS FINISHED (XCOALF, UNITLESS)
  214. C XCOALF IS CALCULATED ACCORDING TO THE RESULTS OF THE "PRESCORR" BLOCK.
  215. C XCOALF = MASS OF ALL VOLATILES DIVIDED BY MASS OF DMMF ORIGINAL COAL.
  216.  
  217. C (10)VOID FRACTION IN GASIFIER (VBED, UNITLESS)
  218. C --------------------------------------------------------------------------
  219. FCOAL = REALR(1)
  220. DP = REALR(2)
  221. DENSI = REALR(3)
  222. YMOIS = REALR(4)
  223. YC = REALR(5)
  224. YASH = REALR(6)
  225. FO2 = REALR(7)
  226. FSTEAM = REALR(8)
  227. XCOALF = REALR(9)
  228. VBED = REALR(10)
  229.  
  230.  
  231. C DECLARE CONSTANT PARAMETERS
  232. RGAS = 8.3145D0
  233. PI = 3.142D0
  234. PAMBI = 1.01325D5
  235.  
  236.  
  237. C RETRIVE MOLECULAR WEIGHT OF EACH COMPONENT (KG/KMOL)
  238. LMW = DMS_IFCMNC('MW')
  239. DO I = 1,NCOMP_NCC
  240. LMWI = LMW+I
  241. XMW(I) = B(LMWI)
  242. END DO
  243.  
  244.  
  245. C RETRIEVE TEMPERATURE(K), PRESSURE(ATM), DIAMETER OF GASIFIER (M)
  246. C AND MOLE FLOWS OF COMPONENTS (KMOL/S).
  247. TG = SOUT(IDXSUB(1)-1+NCOMP_NCC+2)
  248. TS = SOUT(IDXSUB(2)-1+NCOMP_NCC+2)
  249. TM = (TG+TS) / 2.0D0
  250. PT = RPROPS_UPRES / PAMBI
  251. DREACT = RPLUGR_UDIAM
  252. NO2 = SOUT(IDXSUB(1)-1+1)
  253. NCO = SOUT(IDXSUB(1)-1+2)
  254. NH2 = SOUT(IDXSUB(1)-1+3)
  255. NCO2 = SOUT(IDXSUB(1)-1+4)
  256. NH2O = SOUT(IDXSUB(1)-1+5)
  257. NH2S = SOUT(IDXSUB(1)-1+6)
  258. NN2 = SOUT(IDXSUB(1)-1+7)
  259. NCH4 = SOUT(IDXSUB(1)-1+8)
  260. NC6H6 = SOUT(IDXSUB(1)-1+9)
  261. NTOTG = NO2+NCO+NH2+NCO2+NH2O+NH2S+NN2+NCH4+NC6H6
  262.  
  263.  
  264. C CALCULATE COMPONENT MOLE FRACTIONS
  265. YO2 = NO2 / NTOTG
  266. YCO = NCO / NTOTG
  267. YH2 = NH2 / NTOTG
  268. YCO2 = NCO2 / NTOTG
  269. YH2O = NH2O / NTOTG
  270. YH2S = NH2S / NTOTG
  271. YN2 = NN2 / NTOTG
  272. YCH4 = NCH4 / NTOTG
  273. YC6H6 = NC6H6/ NTOTG
  274.  
  275.  
  276. C CALCULATE COMPONENT PARTIAL PRESSURES(ATM)
  277. PO2 = YO2 * PT
  278. PCO = YCO * PT
  279. PH2 = YH2 * PT
  280. PCO2 = YCO2 * PT
  281. PH2O = YH2O * PT
  282. PH2S = YH2S * PT
  283. PN2 = YN2 * PT
  284. PCH4 = YCH4 * PT
  285. PC6H6 = YC6H6* PT
  286.  
  287.  
  288. C CARBON AND COAL CONVERSIONS, AND COEFFICIENT Y=RC/R
  289. NCARGAS= NCO + NCO2 + NCH4 + NC6H6*6.0D0
  290. XC = NCARGAS / (FCOAL*(1.0D0-YMOIS)*YC/XMW(10))
  291. XCOAL = (NO2 *XMW(1) + NCO *XMW(2) + NH2 *XMW(3)
  292. + +NCO2*XMW(4) + NH2O*XMW(5) + NH2S *XMW(6)
  293. + +NN2 *XMW(7) + NCH4*XMW(8) + NC6H6*XMW(9)
  294. + -FO2 - FSTEAM)
  295. + /(FCOAL*(1.0D0-YMOIS)*(1.0D0-YASH))
  296. RCR = ((1.0D0-XCOAL)/(1.0D0-XCOALF))**0.333
  297.  
  298.  
  299. C REACTION RATE OF SOLID AND GAS PHASES
  300. C C + O2 (KG CARBON/M/S)
  301. Z = 2500.0D0 * DEXP(-6249.0D0/TM)
  302. IF (DP.LT.0.005D0) THEN
  303. PHI = (2.0D0*Z+2.0D0) / (Z+2.0D0)
  304. ELSE IF (DP.GE.0.005 .AND. DP.LE.0.1) THEN
  305. PHI = ((2.0D0*Z+2.0D0)-Z*(DP-0.005D0)/0.095D0)/(Z+2.0D0)
  306. ELSE
  307. PHI = 1.0D0
  308. END IF
  309. KDIFF = 0.292D0*PHI*(4.26D0/TM)*(TG/1800.0D0)**1.75/(PT*DP)
  310. KS = 8710.0D0 * DEXP(-17967.0D0/TS)
  311. VOID = 0.75D0
  312. KDASH = KDIFF * VOID**2.5
  313. KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
  314. + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
  315. DPO2 = PO2
  316. RCARO2 = KOVER*DPO2 * 6.0D0/DP
  317. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  318. + *(1.0D0-VBED)
  319.  
  320. C C + H2O (KG CARBON/M/S)
  321. KDIFF = 10.0D-4 * (TM/2000.0D0)**0.75 / (PT*DP)
  322. KS = 247.0D0 * DEXP(-21060.0D0/TS)
  323. KDASH = KDIFF * VOID**2.5
  324. KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
  325. + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
  326. KEQ = DEXP(17.644D0-30260.0D0/(1.8D0*TS))
  327. DPH2O = PH2O - PH2*PCO/KEQ
  328. RCARH2O= KOVER*DPH2O * 6.0D0/DP
  329. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  330. + *(1.0D0-VBED)
  331.  
  332. C C + CO2 (KG CARBON/M/S)
  333. KDIFF = 7.45D-4 * (TM/2000.0D0)**0.75 / (PT*DP)
  334. KS = 247.0D0 * DEXP(-21060.0D0/TS)
  335. KDASH = KDIFF * VOID**2.5
  336. KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
  337. + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
  338. DPCO2 = PCO2
  339. RCARCO2= KOVER*DPCO2 * 6.0D0/DP
  340. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  341. + *(1.0D0-VBED)
  342.  
  343. C C + H2 (KG CARBON/M/S)
  344. KDIFF = 1.33D-3 * (TM/2000.0D0)**0.75 / (PT*DP)
  345. KS = 0.12D0 * DEXP(-17921.0D0/TS)
  346. KDASH = KDIFF * VOID**2.5
  347. KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
  348. + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
  349. KEQ = 0.175D0/34713.0D0 * DEXP(18400.0D0/(1.8D0*TS))
  350. DPH2 = PH2 - DSQRT(PCH4/KEQ)
  351. RCARH2 = KOVER*DPH2 * 6.0D0/DP
  352. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  353. + *(1.0D0-VBED)
  354.  
  355. C S + H2 (KG SULFUR/M/S)
  356. KDIFF = 1.33D-3 * (TM/2000.0D0)**0.75 / (PT*DP)
  357. KS = 0.12D0 * DEXP(-17921.0D0/TS)
  358. KDASH = KDIFF * VOID**2.5
  359. KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
  360. + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
  361. KEQ = DEXP(-5.0657D0+18557.7225D0/TS)
  362. DPH2 = PH2 - PH2S/KEQ
  363. RSULH2 = KOVER*DPH2 * 6.0D0/DP
  364. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  365. + *(1.0D0-VBED)
  366.  
  367.  
  368. C CALCULATE CONCENTRATION OF COMPONENTS (KMOL/M**3)
  369. C TOTAL MOLAR VOLUME OF GAS PHASE (M**3/KMOL)
  370. KDIAG = 4
  371. KV = 1
  372. CALL PPMON_VOLV(RPROPS_UTEMP,RPROPS_UPRES,Y,NCOMP,IDX,NBOPST,
  373. +KDIAG,KV,VMXV,DVMX,KER)
  374. C COMPONENT CONCENTRATION (KMOL/M**3)
  375. CO2 = YO2 /VMXV
  376. CCO = YCO /VMXV
  377. CH2 = YH2 /VMXV
  378. CCO2 = YCO2/VMXV
  379. CH2O = YH2O/VMXV
  380. CCH4 = YCH4/VMXV
  381.  
  382.  
  383. C REACTION RATE OF COMBUSTION (KMOL REACTION/M/S)
  384. C CO + O2
  385. KCOO2 = 3.09D1 * DEXP(-9.976D4/(RGAS*TG))
  386. RCOO2 = KCOO2 * (CCO*1.0D3) * (CO2*1.0D3)
  387. + *1.0D-3 * (PI/4.0D0*DREACT**2) * VBED
  388.  
  389. C H2 + O2
  390. KH2O2 = 8.83D5 * DEXP(-9.976D4/(RGAS*TG))
  391. RH2O2 = KH2O2 * (CH2*1.0D3) * (CO2*1.0D3)
  392. + *1.0D-3 * (PI/4.0D0*DREACT**2) * VBED
  393.  
  394. C CH4 + O2
  395. KCH4O2 = 3.552D11 * DEXP(-9.304D5/(RGAS*TG))
  396. RCH4O2 = KCH4O2 * (CCH4*1.0D3) * (CO2*1.0D3)
  397. + *1.0D-3 * PI/4.0D0*DREACT**2 * VBED
  398.  
  399. C REACTION RATE OF CO+H2O (KMOL/M/S)
  400. FW = 0.2D0
  401. KCOH2O = 2.77D5 * DEXP(-27760.0D0/(1.987*TS))
  402. + *PT**(0.5D0-PT/250.0D0) * DEXP(-8.91D0+5553.0D0/TS)
  403. KEQ = DEXP(-3.6893D0+7234.0D0/(1.8D0*TM))
  404. XCO = PCO / PT
  405. XCOEQ = (PCO2*PH2/(KEQ*PH2O)) / PT
  406. DPCO = XCO - XCOEQ
  407. RCOH2O = FW * KCOH2O * DPCO
  408. + *(1.0D0-YMOIS)*YASH*DENSI * 1.0D-3
  409. + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
  410. + *(1.0D0-VBED)
  411.  
  412. C REACTION RATE OF CH4 + H2O (KMOL/M/S)
  413. KCH4H2O= 312.0D0 * DEXP(-30000.0D0/(1.987D0*TM))
  414. KEQ = DEXP(33.1371D0-25014.0499/TS)
  415. DCCH4 = CCH4*1.0D3 - CCO*1.0D3*(CH2*1.0D3)**3/(CH2O*1.0D3*KEQ)
  416. RCH4H2O= KCH4H2O*DCCH4 * 1.0D-3
  417. + *(PI/4.0D0*DREACT**2) * VBED
  418.  
  419.  
  420. C INITIALIZE RATES
  421. DO 100 I = 1, NC
  422. RATES(I) = 0D0
  423. 100 CONTINUE
  424.  
  425. IF ((0.9995-XC).LT.1.0D-5) THEN
  426. C *****THE REACTIONS CO+H2O AND CH4+H2O OCCUR.
  427. RATES(1) = 0.0D0
  428. RATES(2) = RCH4H2O - RCOH2O
  429. RATES(3) = RCH4H2O*3.0D0 + RCOH2O
  430. RATES(4) = RCOH2O
  431. RATES(5) = -RCH4H2O - RCOH2O
  432. RATES(6) = 0.0D0
  433. RATES(7) = 0.0D0
  434. RATES(8) = -RCH4H2O
  435. RATES(9) = 0.0D0
  436. RATES(NCOMP_NCC*2-1) = 0.0D0
  437. RATES(NCOMP_NCC*2) = 0.0D0
  438.  
  439. ELSE
  440. C *****THE REACTIONS C+O2, H2+O2, CO+O2, CH4+O2, C+H2O, C+CO2,
  441. C *****C+H2, S+H2, CO+H2O AND CH4+H2O OCCUR.
  442. IF(SOUT(IDXSUB(2)-1+11).LT.1.0E-6) RSULH2 = 0.0D0
  443. RATES(1) = -RCARO2 /XMW(10)*1.0D0/PHI - RH2O2 *0.5D0
  444. + -RCOO2 *0.5D0 - RCH4O2 *2.0D0
  445. RATES(2) = RCARO2 /XMW(10)*2.0D0*(1.0D0-1.0/PHI)
  446. + +RCARH2O/XMW(10)*1.0D0 + RCARCO2/XMW(10)*2.0D0
  447. + +RCH4H2O - RCOH2O
  448. + -RCOO2
  449. RATES(3) = RCARH2O/XMW(10)*1.0D0 + RCOH2O
  450. + +RCH4H2O *3.0D0 - RCARH2 /XMW(10)*2.0D0
  451. + -RSULH2 /XMW(11)*1.0D0 - RH2O2
  452. RATES(4) = RCARO2 /XMW(10)*(2.0D0/PHI-1.0D0)
  453. + +RCOO2 + RCH4O2
  454. + +RCOH2O - RCARCO2/XMW(10)*1.0D0
  455. RATES(5) = RH2O2 + RCH4O2 *2.0D0
  456. + -RCARH2O/XMW(10)*1.0D0 - RCOH2O
  457. + -RCH4H2O
  458. RATES(6) = RSULH2 /XMW(11)*1.0D0
  459. RATES(7) = 0.0D0
  460. RATES(8) = RCARH2 /XMW(10)*1.0D0 - RCH4H2O
  461. + -RCH4O2
  462. RATES(9) = 0.0D0
  463. RATES(NCOMP_NCC*2-1) = -RCARO2 /XMW(10)*1.0D0
  464. + -RCARH2O/XMW(10)*1.0D0
  465. + -RCARCO2/XMW(10)*1.0D0
  466. + -RCARH2 /XMW(10)*1.0D0
  467. RATES(NCOMP_NCC*2) = -RSULH2 /XMW(11)*1.0D0
  468.  
  469. END IF
  470.  
  471. C OUTPUT THE PROFILE OF CARBON CONVERSION:
  472. C XCURR MEANS THE AXIAL LOCATION, M.
  473. C XC MEANS THE CARBON CONVERSION.
  474. WRITE(MAXWRT_MAXBUF(1),200) XCURR*100,XC
  475. 200 FORMAT(1X,"HEIGHT=",F11.5,6X,"XC=",F11.5)
  476. CALL DMS_WRTTRM(1)
  477.  
  478. RETURN
  479. END
  480.  
  481.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement