Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- C User Kinetics Subroutine for RPLUG---GASIFIER.
- C$ #1 BY: JERRY CHANG, DATE: 4-FEB-2009.
- SUBROUTINE USRKIN (SOUT, NSUBS, IDXSUB, ITYPE, NINT,
- 2 INT, NREAL, REAL, IDS, NPO,
- 3 NBOPST, NIWORK, IWORK, NWORK, WORK,
- 4 NC, NR, STOIC, RATES, FLUXM,
- 5 FLUXS, XCURR, NTCAT, RATCAT, NTSSAT,
- 6 RATSSA, KCALL, KFAIL, KFLASH, NCOMP,
- 7 IDX, Y, X, X1, X2,
- 8 NRALL, RATALL, NUSERV, USERV, NINTR,
- 9 INTR, NREALR, REALR, NIWR, IWR,
- * NWR, WR, NRL, RATEL, NRV,
- 1 RATEV)
- C************************************************************************
- C COPYRIGHT (C) 1989 *
- C ASPEN TECHNOLOGY, INC. *
- C CAMBRIDGE, MA *
- C************************************************************************
- C-------------------------------------------------------------------------
- C The models of C+O2, C+H2O, C+CO2, C+H2 and CO+H2O are based on C.-Y.
- C Wen et al.'s work (C.-Y. Wen and T.-Z. Chaung, Entrainment Coal
- C Gasification Modeling, Ind. Eng. Chem. Process Des. Dev., 1979,
- C 18(4): 684-695).
- C The model of S+H2 is modified according to the model of C+H2 in C.-Y.
- C Wen et al.'s work.
- C The model of CH4+H2O is modified according to the model of CH4+H2O in
- C C.-Y. Wen et al.'s work.
- C The models of CO+O2, H2+O2 and CH4+O2 are from the book (K.-F. Cen,
- C M.-J. Ni, Z.-Y. Luo, Theory, Desigh and Operation of Circulating
- C Fluidized Bed Boilers, Beijing: Chinese Electric Power Press, 1998).
- C-------------------------------------------------------------------------
- C%%%%%%%%%%%%CO + O2 = CO2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- C R = 30.9*EXP(-9.976E4/8.315/T)*CCO*CO2
- C (UNIT: T = K; CCO, CO2 = MOL/M**3; R = MOL/M**3/S)
- C
- C%%%%%%%%%%%%H2 + 0.5O2 = H2O%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- C R = 8.83E5*EXP(-9.976E4/8.315/T)*CH2*CO2
- C (UNIT: T = K; CH2, CO2 = MOL/M**3; R = MOL/M**3/S)
- C
- C%%%%%%%%%%%%CH4 + 2O2 = CO2 + 2H2O%%%%%%%%%%%%%%%%%%%%%%%
- C R = 3.552E11*EXP(-9.304E5/8.315/T)*CCH4*CO2
- C (UNIT: T = K; CCH4, CO2 = MOL/M**3; R = MOL/M**3/S)
- C
- C%%%%%%%%%%%%CO + H2O = CO2 + H2%%%%%%%%%%%%%%%%%%%%%%%%%%
- C R = FW*2.77E5*(XCO-XCOA)*EXP(-27760/(1.987*T))
- C *PT**(0.5-PT/250)*EXP(-8.91+5553/T)
- C WHERE FW = ADJUSTABLE PARAMETER, WHICH REPRESENTS THE RELATIVE CATALYTIC
- C REACTIVITY OF ASH TO THAT OF IRON-BASE CATALYST. IN THIS MODEL,
- C FW IS SELECTED TO BE 0.2.
- C XCO = PCO/PT;
- C XCOA= 1/PT*(PCO2*PH2/(KEQ*PH2O))
- C KEQ = EXP(-3.6893+7234/(1.8*T))
- C (UNIT: T = K; PCO, PCO2, PH2, PH2O, PT = ATM; R = MOL/S/(G OF ASH))
- C
- C%%%%%%%%%%%%CH4 + H2O = CO + 3H2%%%%%%%%%%%%%%%%%%%%%%%%%
- C R = 312*EXP(-30000/(1.987*T))*(CCH4-CCO*CH2**3/(CH2O*KEQ))
- C WHERE KEQ = EXP(33.1371-25014.0499/T)
- C (UNIT: T = K; CCH4, CCO, CH2, CH2O = MOL/M**3; R = MOL/M**3/S)
- C
- C%%%%%%%%%%%%C+O2, C+H2O, C+CO2, C+H2 AND S+H2%%%%%%%%%%%%
- C GENERAL KINETIC EQUATION
- C R = 1/(1/KDIFF+1/(KS*Y**2)+1/KDASH*(1/Y-1))*DELTAP
- C WHERE Y = ((1-X)/(1-F))**0.333
- C X = COAL CONVERSION AT ANY TIME AFTER PYROLYSIS IS COMPLETED,
- C BASED ON ORIGINAL DMMF COAL.
- C F = COAL CONVERSION WHEN PYROLYSIS IS COMPLETED,
- C BASED ON ORIGINAL DMMF COAL.
- C KDASH = KDIFF*VOID**N
- C VOID = VOIDAGE IN THE ASH LAYER, WHICH IS SELECTED TO BE 0.75 IN
- C THIS MODEL.
- C N = CONSTANT RANGING FROM 2 TO 3, WHICH IS SELECTED TO BE 2.5 IN
- C THIS MODEL.
- C (UNIT: DELTAP = ATM;
- C R = (G OF CARBON OR SULFUR)/(CM**2 OF COAL SURFACE AREA)/S)
- C
- C %%%%%%C + (1/PHI)O2 = 2*(1-1/PHI)CO + (2/PHI-1)CO2%%%%%%
- C KDIFF = 0.292*PHI*(4.26/T)*(T/1800)**1.75/(PT*DP)
- C KS = 8710*EXP(-17967/T)
- C DELTAP = PO2
- C WHERE DP = DIAMETER OF COAL PARTICLE
- C PHI = (2*Z+2)/(Z+2) (WHEN DP<0.005)
- C PHI = ((2*Z+2)-Z*(DP-0.005)/0.095)/(Z+2) (WHEN 0.005<=DP<=0.1 )
- C PHI = 1 (WHEN DP>0.1 )
- C Z = 2500*EXP(-6249/T)
- C (UNIT: T = K; PO2, PT = ATM; DP = CM)
- C
- C %%%%%%C + H2O = CO + H2%%%%%%
- C KDIFF = 10E-4*(T/2000)**0.75/(PT*DP)
- C KS = 247*EXP(-21060/T)
- C DELTAP = PH2O-PH2*PCO/KEQ
- C WHERE KEQ = EXP(17.644-30260/(1.8*T))
- C (UNIT: T = K; PH2O, PH2, PCO, PT = ATM; DP =CM)
- C
- C %%%%%%C + CO2 = 2CO%%%%%%
- C KDIFF = 7.45E-4*(T/2000)**0.75/(PT*DP)
- C KS = 247*EXP(-21060/T)
- C DELTAP = PCO2
- C (UNIT: T = K; PCO2, PT = ATM; DP = CM)
- C
- C %%%%%%C + 2H2 = CH4%%%%%%
- C KDIFF = 1.33E-3*(T/2000)**0.75/(PT*DP)
- C KS = 0.12*EXP(-17921/T)
- C DELTAP = PH2-SQRT(PCH4/KEQ)
- C WHERE KEQ = 0.175/34713*EXP(18400/(1.8*T))
- C (UNIT: T = K; PH2, PCH4, PT = ATM; DP = CM)
- C
- C %%%%%%S + H2 = H2S%%%%%%
- C KDIFF = 1.33E-3*(T/2000)**0.75/(PT*DP)
- C KS = 0.12*EXP(-17921/T)
- C DELTAP = PH2-PH2S/KEQ
- C WHERE KEQ = EXP(-5.0657+18557.7225/T)
- C (UNIT: T = K; PH2, PH2S, PT = ATM; DP = CM)
- C-------------------------------------------------------------------------
- IMPLICIT NONE
- C
- C DECLARE VARIABLES USED IN DIMENSIONING
- C
- INTEGER NSUBS, NINT, NPO, NIWORK, NWORK,
- + NC, NR, NTCAT, NTSSAT, NCOMP,
- + NRALL, NUSERV, NINTR, NREALR, NIWR,
- + NWR
- C
- #include "ppexec_user.cmn"
- EQUIVALENCE (RMISS, USER_RUMISS)
- EQUIVALENCE (IMISS, USER_IUMISS)
- #include "dms_ncomp.cmn"
- #include "rplg_rplugr.cmn"
- #include "rxn_rprops.cmn"
- EQUIVALENCE (TEMP, RPROPS_UTEMP )
- EQUIVALENCE (PRES, RPROPS_UPRES )
- EQUIVALENCE (VFRAC, RPROPS_UVFRAC)
- EQUIVALENCE (BETA, RPROPS_UBETA )
- EQUIVALENCE (VVAP, RPROPS_UVVAP )
- EQUIVALENCE (VLIQ, RPROPS_UVLIQ )
- EQUIVALENCE (VLIQS, RPROPS_UVLIQS)
- EQUIVALENCE (B(1), IB(1) )
- C
- #include "pputl_ppglob.cmn"
- #include "dms_maxwrt.cmn"
- #include "dms_plex.cmn"
- C DECLARE ARGUMENTS
- C
- INTEGER IDXSUB(NSUBS), ITYPE(NSUBS), INT(NINT), IDS(2),
- + NBOPST(6,NPO), IWORK(NIWORK), IDX(NCOMP), INTR(NINTR),
- + IWR(NIWR), NREAL, KCALL, KFAIL,
- + KFLASH, NRL, NRV, I,
- + IMISS, KDIAG, KV, KER,
- + DMS_IFCMNC, LMW, LMWI
- C
- REAL*8 SOUT(1), WORK(NWORK), STOIC(NC,NSUBS,NR),
- + RATES(1), FLUXM(1), FLUXS(1), RATCAT(NTCAT),
- + RATSSA(NTSSAT),Y(NCOMP), X(NCOMP), X1(NCOMP),
- + X2(NCOMP)
- C
- REAL*8 RATALL(NRALL), USERV(NUSERV), REALR(NREALR),
- + WR(NWR), RATEL(1), RATEV(1), XCURR,
- + XMW(1), B(1), TEMP, PRES,
- + RGAS, PI
- C
- REAL*8 REAL(NREAL), RMISS, XLEN, DIAM,
- + VFRAC, BETA, VVAP, VLIQ,
- + VLIQS, VMXV, DVMX
- C
- REAL*8 FCOAL, FO2, FSTEAM, NO2,
- + NCO, NH2, NCO2, NH2O,
- + NH2S, NN2, NCH4, NC6H6,
- + NTOTG, NCARGAS, YO2, YCO,
- + YH2, YCO2, YH2O, YH2S,
- + YN2, YCH4, YC6H6, YMOIS,
- + YC, YASH, XCOALF, XCOAL,
- + XC, DP, VOID, DENSI,
- + DREACT, VBED
- C
- REAL*8 PO2, PCO, PH2, PCO2,
- + PH2O, PH2S, PN2, PCH4,
- + PC6H6, PAMBI, PT, TG,
- + TS, TM
- C
- REAL*8 RCR, Z, PHI, KDIFF,
- + KS, KDASH, KOVER, KEQ,
- + KCOO2, KH2O2, KCH4O2, KCOH2O,
- + KCH4H2O, DPO2, DPH2O, DPCO2,
- + DPH2, DPCO, DCCH4, CO2,
- + CCO, CH2, CCO2, CH2O,
- + CCH4, FW, XCO, XCOEQ,
- + RCARO2, RCARH2O, RCARCO2, RCARH2,
- + RSULH2, RCOO2, RH2O2, RCH4O2,
- + RCOH2O, RCH4H2O
- C
- C BEGIN EXECUTABLE CODE
- C --------------------------------------------------------------------------
- C INPUT PARAMETERS FOR THIS SUBROUTINE, WHICH ARE TRANSFERED WITH THE HELP
- C OF CALCULATOR "GASIFICAL".
- C
- C %%%COAL STREAM%%%
- C (1)FLOW RATE (FCOAL, KG/S); (2)PARTICLE DIAMETER (DP, CM);
- C (3)DENSITY (DENSI, KG/M**3); (4)MOISTURE FRACTION (YMOIS, UNITLESS);
- C (5)CARBON FRACTION (YC, UNITLESS); (6)ASH FRACTION (YASH, UNITLESS).
- C
- C %%%OXYGEN AND STEAM STREAMS%%%
- C (7)FLOW RATE OF O2 (FO2, KG/S); (8)FLOW RATE OF STEAM (KG/S)
- C
- C (9)COAL CONVERSION ONCE COAL PYROLYSIS IS FINISHED (XCOALF, UNITLESS)
- C XCOALF IS CALCULATED ACCORDING TO THE RESULTS OF THE "PRESCORR" BLOCK.
- C XCOALF = MASS OF ALL VOLATILES DIVIDED BY MASS OF DMMF ORIGINAL COAL.
- C (10)VOID FRACTION IN GASIFIER (VBED, UNITLESS)
- C --------------------------------------------------------------------------
- FCOAL = REALR(1)
- DP = REALR(2)
- DENSI = REALR(3)
- YMOIS = REALR(4)
- YC = REALR(5)
- YASH = REALR(6)
- FO2 = REALR(7)
- FSTEAM = REALR(8)
- XCOALF = REALR(9)
- VBED = REALR(10)
- C DECLARE CONSTANT PARAMETERS
- RGAS = 8.3145D0
- PI = 3.142D0
- PAMBI = 1.01325D5
- C RETRIVE MOLECULAR WEIGHT OF EACH COMPONENT (KG/KMOL)
- LMW = DMS_IFCMNC('MW')
- DO I = 1,NCOMP_NCC
- LMWI = LMW+I
- XMW(I) = B(LMWI)
- END DO
- C RETRIEVE TEMPERATURE(K), PRESSURE(ATM), DIAMETER OF GASIFIER (M)
- C AND MOLE FLOWS OF COMPONENTS (KMOL/S).
- TG = SOUT(IDXSUB(1)-1+NCOMP_NCC+2)
- TS = SOUT(IDXSUB(2)-1+NCOMP_NCC+2)
- TM = (TG+TS) / 2.0D0
- PT = RPROPS_UPRES / PAMBI
- DREACT = RPLUGR_UDIAM
- NO2 = SOUT(IDXSUB(1)-1+1)
- NCO = SOUT(IDXSUB(1)-1+2)
- NH2 = SOUT(IDXSUB(1)-1+3)
- NCO2 = SOUT(IDXSUB(1)-1+4)
- NH2O = SOUT(IDXSUB(1)-1+5)
- NH2S = SOUT(IDXSUB(1)-1+6)
- NN2 = SOUT(IDXSUB(1)-1+7)
- NCH4 = SOUT(IDXSUB(1)-1+8)
- NC6H6 = SOUT(IDXSUB(1)-1+9)
- NTOTG = NO2+NCO+NH2+NCO2+NH2O+NH2S+NN2+NCH4+NC6H6
- C CALCULATE COMPONENT MOLE FRACTIONS
- YO2 = NO2 / NTOTG
- YCO = NCO / NTOTG
- YH2 = NH2 / NTOTG
- YCO2 = NCO2 / NTOTG
- YH2O = NH2O / NTOTG
- YH2S = NH2S / NTOTG
- YN2 = NN2 / NTOTG
- YCH4 = NCH4 / NTOTG
- YC6H6 = NC6H6/ NTOTG
- C CALCULATE COMPONENT PARTIAL PRESSURES(ATM)
- PO2 = YO2 * PT
- PCO = YCO * PT
- PH2 = YH2 * PT
- PCO2 = YCO2 * PT
- PH2O = YH2O * PT
- PH2S = YH2S * PT
- PN2 = YN2 * PT
- PCH4 = YCH4 * PT
- PC6H6 = YC6H6* PT
- C CARBON AND COAL CONVERSIONS, AND COEFFICIENT Y=RC/R
- NCARGAS= NCO + NCO2 + NCH4 + NC6H6*6.0D0
- XC = NCARGAS / (FCOAL*(1.0D0-YMOIS)*YC/XMW(10))
- XCOAL = (NO2 *XMW(1) + NCO *XMW(2) + NH2 *XMW(3)
- + +NCO2*XMW(4) + NH2O*XMW(5) + NH2S *XMW(6)
- + +NN2 *XMW(7) + NCH4*XMW(8) + NC6H6*XMW(9)
- + -FO2 - FSTEAM)
- + /(FCOAL*(1.0D0-YMOIS)*(1.0D0-YASH))
- RCR = ((1.0D0-XCOAL)/(1.0D0-XCOALF))**0.333
- C REACTION RATE OF SOLID AND GAS PHASES
- C C + O2 (KG CARBON/M/S)
- Z = 2500.0D0 * DEXP(-6249.0D0/TM)
- IF (DP.LT.0.005D0) THEN
- PHI = (2.0D0*Z+2.0D0) / (Z+2.0D0)
- ELSE IF (DP.GE.0.005 .AND. DP.LE.0.1) THEN
- PHI = ((2.0D0*Z+2.0D0)-Z*(DP-0.005D0)/0.095D0)/(Z+2.0D0)
- ELSE
- PHI = 1.0D0
- END IF
- KDIFF = 0.292D0*PHI*(4.26D0/TM)*(TG/1800.0D0)**1.75/(PT*DP)
- KS = 8710.0D0 * DEXP(-17967.0D0/TS)
- VOID = 0.75D0
- KDASH = KDIFF * VOID**2.5
- KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
- + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
- DPO2 = PO2
- RCARO2 = KOVER*DPO2 * 6.0D0/DP
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C C + H2O (KG CARBON/M/S)
- KDIFF = 10.0D-4 * (TM/2000.0D0)**0.75 / (PT*DP)
- KS = 247.0D0 * DEXP(-21060.0D0/TS)
- KDASH = KDIFF * VOID**2.5
- KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
- + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
- KEQ = DEXP(17.644D0-30260.0D0/(1.8D0*TS))
- DPH2O = PH2O - PH2*PCO/KEQ
- RCARH2O= KOVER*DPH2O * 6.0D0/DP
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C C + CO2 (KG CARBON/M/S)
- KDIFF = 7.45D-4 * (TM/2000.0D0)**0.75 / (PT*DP)
- KS = 247.0D0 * DEXP(-21060.0D0/TS)
- KDASH = KDIFF * VOID**2.5
- KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
- + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
- DPCO2 = PCO2
- RCARCO2= KOVER*DPCO2 * 6.0D0/DP
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C C + H2 (KG CARBON/M/S)
- KDIFF = 1.33D-3 * (TM/2000.0D0)**0.75 / (PT*DP)
- KS = 0.12D0 * DEXP(-17921.0D0/TS)
- KDASH = KDIFF * VOID**2.5
- KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
- + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
- KEQ = 0.175D0/34713.0D0 * DEXP(18400.0D0/(1.8D0*TS))
- DPH2 = PH2 - DSQRT(PCH4/KEQ)
- RCARH2 = KOVER*DPH2 * 6.0D0/DP
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C S + H2 (KG SULFUR/M/S)
- KDIFF = 1.33D-3 * (TM/2000.0D0)**0.75 / (PT*DP)
- KS = 0.12D0 * DEXP(-17921.0D0/TS)
- KDASH = KDIFF * VOID**2.5
- KOVER = 1.0D0 / (1.0D0/KDIFF + 1.0D0/(KS*RCR**2)
- + +1.0D0/KDASH*(1.0D0/RCR-1.0D0))
- KEQ = DEXP(-5.0657D0+18557.7225D0/TS)
- DPH2 = PH2 - PH2S/KEQ
- RSULH2 = KOVER*DPH2 * 6.0D0/DP
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C CALCULATE CONCENTRATION OF COMPONENTS (KMOL/M**3)
- C TOTAL MOLAR VOLUME OF GAS PHASE (M**3/KMOL)
- KDIAG = 4
- KV = 1
- CALL PPMON_VOLV(RPROPS_UTEMP,RPROPS_UPRES,Y,NCOMP,IDX,NBOPST,
- +KDIAG,KV,VMXV,DVMX,KER)
- C COMPONENT CONCENTRATION (KMOL/M**3)
- CO2 = YO2 /VMXV
- CCO = YCO /VMXV
- CH2 = YH2 /VMXV
- CCO2 = YCO2/VMXV
- CH2O = YH2O/VMXV
- CCH4 = YCH4/VMXV
- C REACTION RATE OF COMBUSTION (KMOL REACTION/M/S)
- C CO + O2
- KCOO2 = 3.09D1 * DEXP(-9.976D4/(RGAS*TG))
- RCOO2 = KCOO2 * (CCO*1.0D3) * (CO2*1.0D3)
- + *1.0D-3 * (PI/4.0D0*DREACT**2) * VBED
- C H2 + O2
- KH2O2 = 8.83D5 * DEXP(-9.976D4/(RGAS*TG))
- RH2O2 = KH2O2 * (CH2*1.0D3) * (CO2*1.0D3)
- + *1.0D-3 * (PI/4.0D0*DREACT**2) * VBED
- C CH4 + O2
- KCH4O2 = 3.552D11 * DEXP(-9.304D5/(RGAS*TG))
- RCH4O2 = KCH4O2 * (CCH4*1.0D3) * (CO2*1.0D3)
- + *1.0D-3 * PI/4.0D0*DREACT**2 * VBED
- C REACTION RATE OF CO+H2O (KMOL/M/S)
- FW = 0.2D0
- KCOH2O = 2.77D5 * DEXP(-27760.0D0/(1.987*TS))
- + *PT**(0.5D0-PT/250.0D0) * DEXP(-8.91D0+5553.0D0/TS)
- KEQ = DEXP(-3.6893D0+7234.0D0/(1.8D0*TM))
- XCO = PCO / PT
- XCOEQ = (PCO2*PH2/(KEQ*PH2O)) / PT
- DPCO = XCO - XCOEQ
- RCOH2O = FW * KCOH2O * DPCO
- + *(1.0D0-YMOIS)*YASH*DENSI * 1.0D-3
- + *(1.0D-3/1.0D-6) * (PI/4.0D0*DREACT**2)
- + *(1.0D0-VBED)
- C REACTION RATE OF CH4 + H2O (KMOL/M/S)
- KCH4H2O= 312.0D0 * DEXP(-30000.0D0/(1.987D0*TM))
- KEQ = DEXP(33.1371D0-25014.0499/TS)
- DCCH4 = CCH4*1.0D3 - CCO*1.0D3*(CH2*1.0D3)**3/(CH2O*1.0D3*KEQ)
- RCH4H2O= KCH4H2O*DCCH4 * 1.0D-3
- + *(PI/4.0D0*DREACT**2) * VBED
- C INITIALIZE RATES
- DO 100 I = 1, NC
- RATES(I) = 0D0
- 100 CONTINUE
- IF ((0.9995-XC).LT.1.0D-5) THEN
- C *****THE REACTIONS CO+H2O AND CH4+H2O OCCUR.
- RATES(1) = 0.0D0
- RATES(2) = RCH4H2O - RCOH2O
- RATES(3) = RCH4H2O*3.0D0 + RCOH2O
- RATES(4) = RCOH2O
- RATES(5) = -RCH4H2O - RCOH2O
- RATES(6) = 0.0D0
- RATES(7) = 0.0D0
- RATES(8) = -RCH4H2O
- RATES(9) = 0.0D0
- RATES(NCOMP_NCC*2-1) = 0.0D0
- RATES(NCOMP_NCC*2) = 0.0D0
- ELSE
- C *****THE REACTIONS C+O2, H2+O2, CO+O2, CH4+O2, C+H2O, C+CO2,
- C *****C+H2, S+H2, CO+H2O AND CH4+H2O OCCUR.
- IF(SOUT(IDXSUB(2)-1+11).LT.1.0E-6) RSULH2 = 0.0D0
- RATES(1) = -RCARO2 /XMW(10)*1.0D0/PHI - RH2O2 *0.5D0
- + -RCOO2 *0.5D0 - RCH4O2 *2.0D0
- RATES(2) = RCARO2 /XMW(10)*2.0D0*(1.0D0-1.0/PHI)
- + +RCARH2O/XMW(10)*1.0D0 + RCARCO2/XMW(10)*2.0D0
- + +RCH4H2O - RCOH2O
- + -RCOO2
- RATES(3) = RCARH2O/XMW(10)*1.0D0 + RCOH2O
- + +RCH4H2O *3.0D0 - RCARH2 /XMW(10)*2.0D0
- + -RSULH2 /XMW(11)*1.0D0 - RH2O2
- RATES(4) = RCARO2 /XMW(10)*(2.0D0/PHI-1.0D0)
- + +RCOO2 + RCH4O2
- + +RCOH2O - RCARCO2/XMW(10)*1.0D0
- RATES(5) = RH2O2 + RCH4O2 *2.0D0
- + -RCARH2O/XMW(10)*1.0D0 - RCOH2O
- + -RCH4H2O
- RATES(6) = RSULH2 /XMW(11)*1.0D0
- RATES(7) = 0.0D0
- RATES(8) = RCARH2 /XMW(10)*1.0D0 - RCH4H2O
- + -RCH4O2
- RATES(9) = 0.0D0
- RATES(NCOMP_NCC*2-1) = -RCARO2 /XMW(10)*1.0D0
- + -RCARH2O/XMW(10)*1.0D0
- + -RCARCO2/XMW(10)*1.0D0
- + -RCARH2 /XMW(10)*1.0D0
- RATES(NCOMP_NCC*2) = -RSULH2 /XMW(11)*1.0D0
- END IF
- C OUTPUT THE PROFILE OF CARBON CONVERSION:
- C XCURR MEANS THE AXIAL LOCATION, M.
- C XC MEANS THE CARBON CONVERSION.
- WRITE(MAXWRT_MAXBUF(1),200) XCURR*100,XC
- 200 FORMAT(1X,"HEIGHT=",F11.5,6X,"XC=",F11.5)
- CALL DMS_WRTTRM(1)
- RETURN
- END
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement