Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import random
- import math
- import pandas as pd
- alpha = 0.05
- from google.colab import drive
- drive.mount('/content/drive')
- file_path = '/content/drive/MyDrive/table.txt'
- a = float(input('Введите параметр сдвига(a): '))
- lambdaP = float(input('Введите параметр масштаба(лямбда): '))
- N = int(input('Введите объём выборки: '))
- "вывод: Введите параметр сдвига(a): -1
- Введите параметр масштаба(лямбда): 1
- Введите объём выборки: 1000"
- def distributionFunction (x):
- return math.atan((x - a) / lambdaP) / math.pi + 0.5
- R = np.zeros(N)
- for i in range (0, N):
- R[i] = a + lambdaP * math.tan(math.pi * (random.random() - 0.5))
- RSorted = R.copy()
- RSorted.sort()
- RSorted = np.asarray(RSorted, dtype=float)
- np.set_printoptions(formatter={'float': '{:f}'.format})
- print(RSorted)
- print(R)
- "вывод: [-79.854081 -60.276525 -42.441431 -38.149847 -36.979664 -31.878634
- -27.867284 -27.533557 -26.159700 -21.429084 -20.216917 -20.102235
- -20.076769 -19.674909 -19.590602 -19.125453 -18.462549 -18.399320
- -17.707582 -15.798814 -15.292545 -15.051831 -14.796829 -14.737687
- -14.715679 -12.178563 -11.757177 -11.729978 -11.611236 -11.249558
- -10.827199 -10.771752 -10.542624 -10.302350 -10.193830 -10.183896
- -10.129909 -10.081322 -10.066013 -9.422192 -9.207905 -8.664409 -8.393499
- -8.391323 -8.388748 -8.381779 -8.361344 -8.356368 -7.820638 -7.509389
- -7.317908 -7.220271 -7.214352 -7.098820 -6.947402 -6.927981 -6.661438
- -6.628479 -6.565127 -6.431360 -6.395277 -6.315531 -6.310739 -6.261490
- -6.192714 -6.041403 -5.970423 -5.936931 -5.883594 -5.726180 -5.682571
- -5.624340 -5.502221 -5.456204 -5.335302 -5.297016 -5.284165 -5.056535
- -4.943126 -4.894715 -4.888954 -4.882085 -4.840192 -4.750295 -4.708182
- -4.637710 -4.563989 -4.557379 -4.538786 -4.471553 -4.449312 -4.438574
- -4.434896 -4.421976 -4.387669 -4.342015 -4.330346 -4.324358 -4.299042
- -4.291158 -4.265365 -4.192583 -4.187468 -4.170293 -4.147321 -4.087805
- -4.064614 -3.975058 -3.869503 -3.831138 -3.818295 -3.817715 -3.760899
- -3.745323 -3.696766 -3.692203 -3.686412 -3.665732 -3.643854 -3.507630
- -3.503315 -3.498043 -3.466472 -3.464697 -3.453765 -3.449819 -3.447580
- -3.425944 -3.370819 -3.365554 -3.343168 -3.336270 -3.289733 -3.281028
- -3.279131 -3.271646 -3.220992 -3.213519 -3.204496 -3.201276 -3.194162
- -3.186588 -3.148611 -3.145226 -3.145226 -3.124087 -3.108521 -3.090821
- -3.056495 -3.047237 -3.040967 -3.039144 -3.034402 -3.009608 -2.965910
- -2.949859 -2.912477 -2.889682 -2.876392 -2.873575 -2.868880 -2.862638
- -2.858951 -2.854437 -2.849868 -2.838389 -2.833914 -2.814996 -2.795824
- -2.789449 -2.788224 -2.786707 -2.772438 -2.768766 -2.732071 -2.713151
- -2.697328 -2.696718 -2.671570 -2.651619 -2.641176 -2.629218 -2.628141
- -2.623123 -2.611897 -2.611804 -2.605295 -2.603929 -2.596697 -2.595218
- -2.593478 -2.586041 -2.581358 -2.581005 -2.580664 -2.577537 -2.572602
- -2.572108 -2.565783 -2.564113 -2.529774 -2.524923 -2.508460 -2.490930
- -2.485142 -2.471363 -2.469188 -2.467941 -2.453215 -2.437195 -2.433190
- -2.420556 -2.404199 -2.398681 -2.358708 -2.318835 -2.315615 -2.314635
- -2.307312 -2.306405 -2.305636 -2.304271 -2.300475 -2.297163 -2.285000
- -2.279928 -2.276514 -2.270843 -2.267123 -2.266285 -2.248533 -2.243032
- -2.240718 -2.240218 -2.214430 -2.213462 -2.187116 -2.182820 -2.179862
- -2.177037 -2.176707 -2.165502 -2.162655 -2.132361 -2.126541 -2.125828
- -2.096729 -2.094163 -2.093131 -2.083077 -2.077666 -2.066946 -2.044787
- -2.044168 -2.041206 -2.038912 -2.026363 -2.025020 -2.021518 -2.018353
- -2.011265 -2.010267 -1.990512 -1.990460 -1.989833 -1.989294 -1.966415
- -1.959871 -1.955318 -1.953729 -1.945036 -1.941590 -1.941429 -1.936345
- -1.932572 -1.928426 -1.928161 -1.927423 -1.926440 -1.914680 -1.904718
- -1.893963 -1.891019 -1.874603 -1.872019 -1.870130 -1.867714 -1.864172
- -1.863213 -1.863108 -1.860475 -1.859213 -1.856667 -1.850944 -1.835500
- -1.819578 -1.815004 -1.813409 -1.813126 -1.811968 -1.808393 -1.802874
- -1.798767 -1.797754 -1.796564 -1.793489 -1.789932 -1.787095 -1.785544
- -1.785082 -1.784392 -1.781342 -1.780129 -1.775228 -1.774566 -1.766617
- -1.763307 -1.761577 -1.761392 -1.758109 -1.751910 -1.734431 -1.731329
- -1.728332 -1.725402 -1.724905 -1.723726 -1.723382 -1.721619 -1.702888
- -1.701209 -1.701066 -1.697654 -1.696805 -1.694980 -1.688225 -1.687338
- -1.685935 -1.683905 -1.679628 -1.671534 -1.667389 -1.655848 -1.652113
- -1.649531 -1.644951 -1.643882 -1.640662 -1.634542 -1.625226 -1.618238
- -1.613436 -1.609290 -1.609015 -1.607002 -1.606122 -1.605745 -1.605057
- -1.604565 -1.595760 -1.595418 -1.594019 -1.591797 -1.590874 -1.589370
- -1.571999 -1.570398 -1.566615 -1.556513 -1.547266 -1.546249 -1.543485
- -1.541981 -1.541943 -1.538328 -1.531774 -1.526479 -1.523818 -1.523289
- -1.517390 -1.511748 -1.510824 -1.510389 -1.506061 -1.498516 -1.487603
- -1.483527 -1.482491 -1.482332 -1.478860 -1.468272 -1.462890 -1.457551
- -1.456464 -1.448713 -1.433663 -1.432247 -1.428866 -1.420212 -1.416828
- -1.416402 -1.407042 -1.407015 -1.402780 -1.402719 -1.375244 -1.374316
- -1.364185 -1.363873 -1.361475 -1.357058 -1.353516 -1.352781 -1.348877
- -1.347878 -1.344870 -1.336318 -1.330984 -1.330955 -1.329165 -1.327816
- -1.325412 -1.319419 -1.311564 -1.306019 -1.303564 -1.301967 -1.297461
- -1.296740 -1.280589 -1.279226 -1.277824 -1.276800 -1.273399 -1.273324
- -1.271660 -1.268058 -1.265584 -1.259381 -1.251263 -1.250391 -1.236540
- -1.223995 -1.222394 -1.218025 -1.214364 -1.210763 -1.208970 -1.206832
- -1.206363 -1.201229 -1.198095 -1.197027 -1.196809 -1.196358 -1.193936
- -1.191061 -1.189371 -1.188205 -1.184987 -1.181337 -1.180341 -1.179454
- -1.178957 -1.178131 -1.163281 -1.152594 -1.147601 -1.144596 -1.143441
- -1.141341 -1.139351 -1.137398 -1.135620 -1.134294 -1.133759 -1.133038
- -1.118718 -1.116591 -1.114742 -1.111782 -1.107369 -1.102850 -1.101070
- -1.098146 -1.097776 -1.085123 -1.075710 -1.074918 -1.072922 -1.070875
- -1.069334 -1.069030 -1.068838 -1.064050 -1.062630 -1.061126 -1.060615
- -1.059872 -1.054168 -1.050727 -1.048672 -1.036643 -1.032441 -1.029201
- -1.022975 -1.019691 -1.018818 -1.015750 -1.014484 -1.011218 -1.006103
- -1.003121 -1.002583 -1.001230 -1.001062 -0.999242 -0.994783 -0.988591
- -0.987629 -0.987322 -0.985366 -0.982561 -0.977121 -0.977115 -0.976827
- -0.975026 -0.971997 -0.968217 -0.963251 -0.960754 -0.958054 -0.949510
- -0.948612 -0.948396 -0.948220 -0.947573 -0.945895 -0.942636 -0.933871
- -0.932230 -0.931777 -0.926353 -0.923319 -0.922503 -0.921919 -0.920727
- -0.919788 -0.919023 -0.916896 -0.914904 -0.906295 -0.903835 -0.896838
- -0.894275 -0.892946 -0.892729 -0.889755 -0.888736 -0.882913 -0.880280
- -0.878420 -0.876714 -0.872663 -0.866929 -0.866776 -0.864966 -0.863720
- -0.863383 -0.857069 -0.855973 -0.854661 -0.853170 -0.850597 -0.850513
- -0.849641 -0.847154 -0.843691 -0.840413 -0.838037 -0.837147 -0.836246
- -0.828447 -0.823481 -0.815730 -0.815265 -0.813986 -0.813219 -0.812076
- -0.811711 -0.807329 -0.802016 -0.800809 -0.793394 -0.791866 -0.791487
- -0.783659 -0.777367 -0.776734 -0.776530 -0.772046 -0.770109 -0.764809
- -0.764638 -0.762880 -0.752310 -0.749804 -0.746020 -0.745660 -0.743754
- -0.735845 -0.731589 -0.725422 -0.723134 -0.722737 -0.717651 -0.713673
- -0.708652 -0.705135 -0.703899 -0.703494 -0.699292 -0.694408 -0.692058
- -0.690088 -0.687010 -0.684618 -0.683191 -0.682649 -0.679649 -0.677263
- -0.672234 -0.671490 -0.670199 -0.662156 -0.658760 -0.654502 -0.653549
- -0.640249 -0.636501 -0.634905 -0.627816 -0.626198 -0.617511 -0.610355
- -0.603903 -0.602827 -0.593040 -0.593039 -0.593014 -0.591860 -0.589941
- -0.587673 -0.584469 -0.584406 -0.582986 -0.580125 -0.579305 -0.574988
- -0.574314 -0.571725 -0.571622 -0.570312 -0.565896 -0.564639 -0.561428
- -0.555179 -0.552154 -0.551084 -0.535057 -0.531126 -0.531081 -0.527739
- -0.514257 -0.514227 -0.511802 -0.508328 -0.508216 -0.507628 -0.505277
- -0.503970 -0.501619 -0.499012 -0.492091 -0.491336 -0.489676 -0.488208
- -0.486234 -0.485748 -0.475804 -0.470464 -0.468802 -0.463001 -0.459362
- -0.456405 -0.455340 -0.454357 -0.443462 -0.443319 -0.440069 -0.439674
- -0.435668 -0.419961 -0.418574 -0.417388 -0.413084 -0.409990 -0.405758
- -0.404734 -0.396269 -0.388238 -0.387793 -0.373216 -0.372844 -0.367329
- -0.364430 -0.361696 -0.356413 -0.353438 -0.349198 -0.346873 -0.346848
- -0.345515 -0.338835 -0.336181 -0.335542 -0.330423 -0.326010 -0.319768
- -0.298612 -0.297335 -0.297102 -0.295530 -0.287836 -0.284948 -0.284614
- -0.281694 -0.270141 -0.264290 -0.263474 -0.260184 -0.258747 -0.257211
- -0.250431 -0.244929 -0.238473 -0.223394 -0.215330 -0.207465 -0.207043
- -0.192459 -0.189614 -0.182756 -0.178707 -0.168662 -0.166089 -0.156518
- -0.151101 -0.127966 -0.122868 -0.122098 -0.120213 -0.107827 -0.105269
- -0.103741 -0.097423 -0.075050 -0.073118 -0.061570 -0.057235 -0.054287
- -0.032039 -0.024645 -0.023699 -0.014609 -0.013066 0.005496 0.005725
- 0.007510 0.030663 0.040238 0.042918 0.046151 0.052677 0.058657 0.066250
- 0.066415 0.069637 0.083736 0.089587 0.110581 0.114759 0.120280 0.133178
- 0.140106 0.141256 0.146782 0.149885 0.160661 0.165259 0.166431 0.173752
- 0.200070 0.202986 0.203255 0.218904 0.237144 0.241374 0.242020 0.250348
- 0.257039 0.257674 0.269143 0.272323 0.280780 0.302350 0.303792 0.318734
- 0.328618 0.338950 0.348555 0.351519 0.358267 0.375293 0.397221 0.403844
- 0.405236 0.406402 0.411200 0.426912 0.427650 0.477033 0.477172 0.490433
- 0.491306 0.492369 0.498033 0.513136 0.519590 0.519822 0.528934 0.539862
- 0.555413 0.577414 0.581800 0.603704 0.636476 0.663469 0.707684 0.714086
- 0.723191 0.736359 0.760772 0.764872 0.765021 0.780319 0.794277 0.827120
- 0.827786 0.843669 0.873669 0.888495 0.924529 0.929316 0.997263 1.026385
- 1.041736 1.055861 1.098698 1.106446 1.112166 1.113488 1.126484 1.130872
- 1.155758 1.160776 1.163871 1.166312 1.172657 1.297947 1.306225 1.330078
- 1.356702 1.458856 1.461655 1.483653 1.510019 1.540543 1.587279 1.602100
- 1.634342 1.671197 1.674208 1.699483 1.715989 1.731570 1.764687 1.767963
- 1.773778 1.775091 1.778233 1.797586 1.801806 1.801938 1.811493 1.831007
- 1.837537 1.881894 1.887910 1.992124 2.028347 2.059994 2.080456 2.093690
- 2.128806 2.187313 2.214618 2.222890 2.240910 2.311494 2.315756 2.325302
- 2.374423 2.377081 2.388493 2.425007 2.478271 2.529546 2.596467 2.655263
- 2.844932 2.877820 2.951166 2.962963 3.009483 3.040991 3.380386 3.413704
- 3.515835 3.525644 3.641221 3.821652 3.909402 3.959543 3.972167 4.054337
- 4.069000 4.093320 4.263428 4.278270 4.318293 4.440897 4.444854 4.499631
- 4.610259 4.900989 5.074808 5.168325 5.351533 5.645703 5.869067 5.901551
- 6.327168 6.354766 6.423232 6.567557 6.721152 6.726048 7.159985 7.668780
- 7.923705 8.022871 8.093104 8.223151 8.476714 8.864719 8.949550 9.389906
- 9.604152 9.675829 9.800134 10.158535 10.989399 11.751516 12.270335
- 12.375031 12.499334 13.158322 13.183630 13.219293 14.902898 15.698362
- 16.847719 16.886928 21.416550 28.071417 54.143631 73.069606 293.762337
- 578.250967]
- [0.110581 -1.904718 -0.353438 1.297947 -5.284165 -4.421976 -1.766617
- 0.066415 -1.546249 1.155758 -1.329165 -3.220992 10.158535 -1.793489
- -0.584406 -0.281694 -2.876392 -1.609290 -1.927423 -2.629218 -2.177037
- -2.603929 -18.399320 8.093104 -2.096729 -1.407015 -1.018818 -1.001230
- -0.945895 0.005725 -1.019691 -0.565896 0.089587 -2.240218 -7.509389
- 0.046151 -1.193936 -0.507628 -0.713673 -6.628479 -0.387793 -1.197027
- -1.107369 -2.912477 -0.511802 -1.280589 2.187313 -4.557379 -0.672234
- -0.361696 -3.498043 -1.941590 0.241374 -0.166089 1.098698 -0.988591
- -0.764638 0.603704 -0.443462 -1.679628 -0.705135 -0.708652 -1.141341
- -0.455340 0.477172 -1.685935 -0.811711 -1.640662 -3.279131 2.388493
- 0.007510 0.714086 0.069637 -0.013066 4.900989 0.005496 -1.223995
- -1.208970 -1.448713 -3.145226 0.351519 15.698362 -15.292545 -0.061570
- -2.038912 -0.335542 2.128806 -0.813986 -1.696805 3.380386 -5.456204
- -2.611897 -3.009608 -1.989294 -0.250431 -1.134294 -1.163281 -7.098820
- 0.929316 -3.047237 -4.708182 6.721152 -1.074918 -1.273399 -2.572108
- 0.477033 -2.490930 -1.022975 -1.644951 -10.129909 -0.725422 -0.626198
- -0.404734 -0.503970 0.328618 0.636476 -26.159700 -0.356413 -1.003121
- -2.044787 -0.178707 -0.971997 -2.162655 -0.815265 2.325302 -4.434896
- -1.763307 0.237144 -0.878420 -0.850513 0.058657 -4.438574 -1.184987
- -1.276800 -3.818295 -1.068838 -0.722737 -0.456405 -4.187468 -0.855973
- -0.840413 -19.125453 -1.111782 -2.297163 -0.777367 -0.527739 -6.947402
- -2.077666 -1.990512 -3.370819 -0.514227 -0.468802 -1.785544 -1.191061
- 3.040991 -0.499012 0.403844 -5.335302 -0.319768 0.173752 4.499631
- 8.949550 -1.781342 0.555413 -0.531126 2.425007 -1.510824 -1.303564
- 0.924529 -1.218025 0.165259 -0.749804 -0.103741 -1.798767 -0.418574
- -1.863213 -0.505277 -0.987322 -1.643882 -1.330955 -0.812076 -2.176707
- 1.674208 -1.188205 -1.273324 2.240910 -1.279226 0.760772 -4.943126
- 1.634342 54.143631 -0.919023 -2.306405 -0.151101 -0.486234 1.166312
- 5.168325 -0.388238 -0.571725 -0.942636 -0.703494 -1.914680 0.406402
- -1.483527 -0.882913 -1.566615 -1.433663 -3.449819 -6.315531 -0.894275
- 0.120280 1.881894 -3.201276 -20.076769 -0.699292 -0.023699 -1.683905
- -3.090821 -1.133038 0.577414 73.069606 -0.791866 -0.054287 -5.624340
- -0.396269 -3.056495 -0.671490 -1.701209 -1.813126 -0.627816 -0.843691
- 12.499334 -0.454357 -5.883594 0.490433 -1.420212 7.159985 -2.786707
- -3.745323 -2.270843 2.214618 -1.206363 -19.674909 -1.570398 11.751516
- -31.878634 -0.717651 -0.156518 1.126484 -1.375244 -3.336270 -10.542624
- -1.114742 -0.914904 -14.796829 1.773778 -0.610355 1.510019 -1.701066
- 2.377081 -0.552154 1.837537 0.338950 -2.214430 -1.959871 -4.894715
- -8.391323 -1.589370 -1.796564 -2.305636 -1.926440 -1.069030 -1.605745
- -1.625226 -1.482491 -0.764809 -1.891019 -3.692203 -10.066013 0.827120
- -1.785082 1.330078 -0.409990 -2.772438 -5.297016 0.042918 6.567557
- -1.075710 -1.734431 -1.606122 -1.137398 -0.593040 -6.261490 5.645703
- 9.800134 -8.664409 2.315756 -0.580125 -1.015750 -2.358708 0.218904
- 3.972167 -0.662156 3.525644 -0.690088 -1.179454 -0.508328 -2.795824
- -20.102235 -1.259381 -1.277824 -1.893963 -0.916896 -0.602827 2.529546
- -0.922503 -1.605057 -1.214364 -1.613436 1.461655 -0.949510 2.374423
- -1.147601 1.026385 -0.488208 -21.429084 -3.686412 -1.547266 -2.243032
- -0.636501 0.765021 -1.523289 1.458856 -2.873575 -3.034402 -2.010267
- -2.132361 -2.965910 -6.192714 -3.108521 -0.731589 1.106446 -2.565783
- -1.671534 -0.791487 1.483653 4.263428 -1.250391 -1.222394 -14.715679
- -6.431360 -1.251263 -0.687010 1.163871 -0.107827 -2.581005 -2.285000
- 0.302350 -3.817715 -2.529774 -0.168662 0.581800 -2.838389 8.022871
- 2.478271 -1.330984 0.491306 -0.948612 0.250348 -1.462890 0.492369
- -2.467941 -1.591797 0.519590 -1.014484 -1.724905 -1.863108 -1.344870
- -0.994783 -1.498516 -0.189614 13.219293 -1.571999 -0.776734 578.250967
- -3.464697 -0.555179 -1.374316 -17.707582 -1.178957 -0.531081 -0.815730
- -0.182756 6.354766 -3.365554 -0.263474 0.257674 2.028347 0.358267
- -1.775228 -0.127966 2.059994 0.827786 -1.864172 -1.761392 4.318293
- 16.886928 -10.827199 -0.270141 -2.300475 -1.102850 -4.324358 -0.793394
- 1.055861 -4.471553 3.009483 -1.364185 -1.607002 -3.281028 -0.120213
- -2.304271 -3.145226 0.242020 -0.948396 21.416550 -0.297102 -0.982561
- -2.596697 -0.828447 -3.831138 0.133178 1.797586 -1.482332 -2.605295
- -0.923319 -0.489676 -12.178563 -1.789932 0.257039 -5.502221 -0.373216
- -1.236540 -2.314635 -1.784392 -0.752310 -1.941429 -0.735845 -2.713151
- -1.511748 -0.589941 -0.813219 -0.258747 -0.591860 -2.577537 -2.187116
- -4.888954 12.270335 0.780319 -1.363873 -3.643854 -0.640249 -3.194162
- -0.207043 -10.302350 -0.838037 -8.393499 -0.215330 -0.977115 1.160776
- -0.570312 -1.196358 -0.746020 -1.478860 -0.783659 0.040238 -3.289733
- 0.160661 -2.508460 -2.789449 -2.471363 -2.889682 0.114759 -0.024645
- -1.932572 -3.453765 -0.692058 2.596467 -2.696718 -0.244929 -2.240718
- -0.419961 -2.279928 -1.062630 -0.364430 -0.564639 -1.595760 -3.204496
- -0.863720 -1.531774 1.731570 2.080456 1.112166 9.389906 -1.835500
- -0.297335 -0.847154 -0.999242 -2.697328 -0.836246 -0.032039 -1.780129
- -0.892729 -1.189371 1.801938 -0.837147 -3.975058 6.726048 1.775091
- -2.732071 -0.802016 -0.770109 -0.336181 -1.011218 16.847719 -2.276514
- -1.054168 -0.440069 -2.949859 0.397221 6.327168 -0.284948 -0.947573
- -3.343168 -0.372844 -2.593478 -1.634542 -0.122098 -2.849868 -1.874603
- -6.395277 -0.260184 -2.179862 -2.586041 0.083736 1.715989 -6.310739
- 13.158322 -1.060615 -3.213519 -1.870130 2.877820 0.200070 10.989399
- -1.416402 -1.859213 0.411200 -4.538786 -1.538328 -0.854661 4.278270
- -0.864966 -0.349198 -4.299042 -1.085123 -1.594019 -2.041206 -0.745660
- -0.287836 -1.050727 -1.872019 -2.433190 -1.819578 -1.989833 -3.503315
- -10.193830 -2.165502 -1.928161 0.280780 0.141256 -3.425944 -0.345515
- -0.921919 -1.667389 -0.470464 -0.963251 -1.802874 -5.726180 -10.183896
- -1.723726 -2.862638 -0.492091 -1.655848 5.869067 -0.931777 -1.118718
- -20.216917 -0.968217 -0.485748 -1.402719 -1.301967 -0.889755 -11.757177
- -1.407042 1.130872 -1.649531 -1.618238 0.539862 -0.561428 -1.327816
- -1.815004 -1.936345 -1.725402 -4.637710 -2.094163 -1.860475 -4.291158
- -1.143441 -2.066946 -1.180341 -1.697654 -3.665732 -3.271646 -2.307312
- -0.703899 -1.032441 -0.654502 0.794277 -0.933871 1.811493 4.440897
- -8.388748 -2.404199 -2.453215 0.140106 -4.192583 -27.533557 -79.854081
- -0.459362 -1.556513 -0.863383 -0.057235 -8.356368 -2.628141 -0.977121
- -1.064050 0.843669 0.663469 -0.684618 -0.514257 0.723191 -1.152594
- -15.051831 -1.541981 3.909402 -0.192459 -1.590874 -1.348877 -4.449312
- -0.958054 -2.026363 -2.858951 3.959543 -0.582986 -0.346873 0.149885
- 0.066250 -1.198095 -4.087805 2.844932 -0.670199 -7.214352 -0.439674
- 0.888495 -0.105269 -1.487603 1.172657 0.348555 8.223151 1.699483
- -36.979664 -0.679649 -6.041403 -1.353516 -1.416828 -1.506061 -1.468272
- 0.146782 -15.798814 -0.694408 -5.682571 -0.677263 -38.149847 -2.267123
- -2.315615 -2.018353 1.587279 -11.611236 -4.387669 -3.760899 1.778233
- 2.093690 4.054337 -1.604565 -0.075050 0.202986 -1.271660 -1.206832
- -0.579305 -0.298612 13.183630 -10.771752 -2.420556 1.801806 -1.268058
- -3.869503 0.405236 -1.456464 0.166431 -2.126541 0.513136 1.992124
- 1.767963 -0.823481 -1.325412 -0.295530 0.736359 -0.906295 -0.571622
- -11.249558 -18.462549 -1.048672 -0.603903 -7.220271 -0.593039 -3.507630
- 0.303792 -4.563989 -1.098146 -19.590602 1.602100 8.864719 -0.987629
- 7.923705 -1.002583 -0.849641 -1.856667 -4.170293 -1.758109 -1.694980
- -1.541943 -0.919788 0.269143 -0.574314 -2.182820 -4.750295 -1.990460
- -1.133759 -2.083077 -1.352781 -1.347878 -1.181337 0.030663 -0.551084
- -1.178131 -0.682649 -1.402780 -27.867284 -1.297461 3.515835 -1.319419
- -1.787095 -1.072922 9.604152 -1.543485 -0.743754 -2.572602 -1.061126
- 5.351533 -0.896838 -5.970423 2.962963 -0.985366 -3.186588 -0.435668
- -0.617511 -0.634905 -2.524923 0.426912 -0.593014 -2.093131 -0.888736
- -1.361475 0.375293 -1.306019 -2.651619 2.951166 -1.070875 0.707684
- 4.444854 -2.788224 -6.661438 -2.248533 3.821652 2.311494 -0.535057
- 1.671197 0.873669 -0.463001 -0.723134 -0.920727 -4.330346 -3.040967
- -9.422192 -0.367329 3.641221 -3.124087 -6.565127 -1.097776 -1.510389
- -2.581358 -1.731329 -1.210763 -0.475804 5.074808 -9.207905 -0.892946
- -2.623123 0.528934 -6.927981 -2.580664 -1.953729 -1.311564 4.069000
- -2.011265 -3.148611 -4.342015 -0.584469 1.113488 -1.811968 -2.021518
- 2.222890 -1.428866 -2.469188 -0.014609 -0.932230 -0.850597 -1.357058
- 1.764687 -0.658760 1.041736 -1.001062 -1.201229 -1.029201 -0.948220
- -1.036643 -1.059872 -1.139351 293.762337 -1.966415 -2.044168 -0.238473
- -3.039144 -1.069334 -2.213462 -1.101070 -2.854437 0.272323 -10.081322
- -0.284614 -0.330423 -2.025020 -0.853170 -2.318835 -8.361344 0.318734
- -5.936931 -1.609015 -0.857069 -2.814996 -1.135620 -0.880280 -0.762880
- -2.125828 -0.574988 0.498033 -1.728332 1.831007 -0.772046 1.887910
- -2.833914 9.675829 -4.064614 -0.800809 -0.807329 5.901551 -1.955318
- -1.850944 14.902898 -0.097423 -1.808393 -0.413084 -5.056535 -1.928426
- -0.866776 -0.960754 -1.751910 -11.729978 1.540543 -7.820638 -0.926353
- -1.595418 -0.876714 -3.447580 -1.867714 -1.523818 -1.797754 -0.683191
- -1.774566 0.764872 -2.641176 -2.485142 -0.587673 -1.144596 -2.437195
- 0.997263 -4.265365 -1.813409 -0.501619 0.427650 4.610259 -0.207465
- 0.052677 -0.338835 -1.196809 6.423232 -0.346848 -7.317908 -0.776530
- -2.768766 -0.491336 -1.702888 8.476714 -2.595218 -1.517390 -0.264290
- 7.668780 2.655263 -0.903835 -3.696766 -0.872663 -2.266285 -0.073118
- -2.611804 12.375031 -0.326010 -1.526479 -1.687338 -1.721619 -2.868880
- -1.688225 0.203255 1.306225 -0.223394 -0.257211 -3.466472 0.519822
- -0.443319 -0.976827 -60.276525 -0.866929 -1.652113 28.071417 -1.296740
- -2.671570 -14.737687 4.093320 -4.882085 -0.653549 -1.006103 -1.457551
- -1.945036 -2.398681 -1.336318 -1.432247 -42.441431 -8.381779 -0.405758
- -0.122868 -1.723382 3.413704 -1.265584 -0.508216 -1.116591 -0.417388
- 1.356702 -4.840192 -2.564113 -4.147321 -0.975026 -1.761577]"
- xiTable = pd.read_csv(file_path, sep="\t", header=None)
- print (xiTable)
- xiTable = np.asarray(xiTable, dtype=float)
- "вывод: 0 1 2 3 4 5 6 7
- 0 0 0.95000 0.75000 0.25000 0.10000 0.05000 0.01000 0.00500
- 1 1 0.00393 0.10153 1.32330 2.70554 3.84146 6.63490 7.87944
- 2 2 0.10259 0.57536 2.77259 4.60517 5.99146 9.21034 10.59663
- 3 3 0.35185 1.21253 4.10834 6.25139 7.81473 11.34487 12.83816
- 4 4 0.71072 1.92256 5.38527 7.77944 9.48773 13.27670 14.86026
- 5 5 1.14548 2.67460 6.62568 9.23636 11.07050 15.08627 16.74960
- 6 6 1.63538 3.45460 7.84080 10.64464 12.59159 16.81189 18.54758
- 7 7 2.16735 4.25485 9.03715 12.01704 14.06714 18.47531 20.27774
- 8 8 2.73264 5.07064 10.21885 13.36157 15.50731 20.09024 21.95495
- 9 9 3.32511 5.89883 11.38875 14.68366 16.91898 21.66599 23.58935
- 10 10 3.94030 6.73720 12.54886 15.98718 18.30704 23.20925 25.18818
- 11 15 7.26094 11.03654 18.24509 22.30713 24.99579 30.57791 32.80132
- 12 20 10.85081 15.45177 23.82769 28.41198 31.41043 37.56623 39.99685
- 13 25 14.61141 19.93934 29.33885 34.38159 37.65248 44.31410 46.92789
- 14 30 18.49266 24.47761 34.79974 40.25602 43.77297 46.97924 50.89218"
- def findTableXi(k, alpha):
- column = 0
- for i in range (1, xiTable.shape[1]):
- if xiTable[0][i] == alpha:
- column = i
- if column == 0:
- return 'Нет нужного значения альфа в таблице'
- i = 1
- while i < len(xiTable) - 1 and xiTable[i][0] < k:
- i += 1
- if k == xiTable[i][0]:
- xi = xiTable[i][column]
- elif k > xiTable[len(xiTable) - 1][0]:
- xi = xiTable[len(xiTable) - 1][column] + (xiTable[len(xiTable) - 1][column] - xiTable[len(xiTable) - 2][column]) / (xiTable[len(xiTable) - 1][0] - xiTable[len(xiTable) - 2][0]) * (k - xiTable[len(xiTable) - 1][0])
- else:
- xi = xiTable[i - 1][column] + (xiTable[i][column] - xiTable[i - 1][column]) / (xiTable[i][0] - xiTable[i - 1][0]) * (k - xiTable[i - 1][0])
- return xi
- intervalsNumber = int(1 + 3.322 * math.log10(N))
- k = intervalsNumber - 1
- XSquaredE = 0
- j = 0
- for i in range (0, intervalsNumber):
- n = 0
- while j < N and RSorted[j] < RSorted[0] + (RSorted[N - 1] - RSorted[0]) * (i + 1) / intervalsNumber:
- j += 1
- n += 1
- XSquaredE += (n - N * (distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * (i + 1) / intervalsNumber) - distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * i / intervalsNumber))) * (n - N * (distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * (i + 1) / intervalsNumber) - distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * i / intervalsNumber))) / (N * (distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * (i + 1) / intervalsNumber) - distributionFunction(RSorted[0] + (RSorted[N - 1] - RSorted[0]) * i / intervalsNumber)))
- XSquaredT = findTableXi(k, alpha)
- print('Теоретическое значение хи-квадрат: ' + str(XSquaredT))
- print('Расчётное значение хи-квадрат: ' + str(XSquaredE))
- "вывод: Теоретическое значение хи-квадрат: 16.91898
- Расчётное значение хи-квадрат: 5.53163152806912"
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement